{"title":"航天推进的巨大挑战","authors":"M. Oehlschlaeger","doi":"10.3389/fpace.2022.1027943","DOIUrl":null,"url":null,"abstract":"Aerospace propulsion technologies are well established and commercialized for lowspeed to supersonic air flight, payload launch to space, and missions within space. However, present aerospace propulsion systems have a number of shortcomings, including their environmental impact, performance, and mission capabilities, which represent grand challenges to the aerospace engineering research and development communities. These and other shortcomings will need to be addressed through fundamental and applied research that seeks to improve current technologies and develop understanding of the underlying physics, new engineering methods, and new aerospace propulsion concepts and technologies. With increased public interest in aerospace engineering, resulting from the wide access to air travel and increased number of space launches per year, and the increased economic activity and opportunity for scientific discovery that these activities have provided, the field of aerospace propulsion has a bright future. The grand challenges that our field faces, described in part here, offer great opportunities for the current and future generation of researchers. The Energetics and Propulsion section of Frontiers in Aerospace Engineering looks forward to supporting and disseminating research that addresses the current and future challenges in aerospace propulsion and energetics.","PeriodicalId":365813,"journal":{"name":"Frontiers in Aerospace Engineering","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Grand challenges in aerospace propulsion\",\"authors\":\"M. Oehlschlaeger\",\"doi\":\"10.3389/fpace.2022.1027943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerospace propulsion technologies are well established and commercialized for lowspeed to supersonic air flight, payload launch to space, and missions within space. However, present aerospace propulsion systems have a number of shortcomings, including their environmental impact, performance, and mission capabilities, which represent grand challenges to the aerospace engineering research and development communities. These and other shortcomings will need to be addressed through fundamental and applied research that seeks to improve current technologies and develop understanding of the underlying physics, new engineering methods, and new aerospace propulsion concepts and technologies. With increased public interest in aerospace engineering, resulting from the wide access to air travel and increased number of space launches per year, and the increased economic activity and opportunity for scientific discovery that these activities have provided, the field of aerospace propulsion has a bright future. The grand challenges that our field faces, described in part here, offer great opportunities for the current and future generation of researchers. The Energetics and Propulsion section of Frontiers in Aerospace Engineering looks forward to supporting and disseminating research that addresses the current and future challenges in aerospace propulsion and energetics.\",\"PeriodicalId\":365813,\"journal\":{\"name\":\"Frontiers in Aerospace Engineering\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fpace.2022.1027943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpace.2022.1027943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aerospace propulsion technologies are well established and commercialized for lowspeed to supersonic air flight, payload launch to space, and missions within space. However, present aerospace propulsion systems have a number of shortcomings, including their environmental impact, performance, and mission capabilities, which represent grand challenges to the aerospace engineering research and development communities. These and other shortcomings will need to be addressed through fundamental and applied research that seeks to improve current technologies and develop understanding of the underlying physics, new engineering methods, and new aerospace propulsion concepts and technologies. With increased public interest in aerospace engineering, resulting from the wide access to air travel and increased number of space launches per year, and the increased economic activity and opportunity for scientific discovery that these activities have provided, the field of aerospace propulsion has a bright future. The grand challenges that our field faces, described in part here, offer great opportunities for the current and future generation of researchers. The Energetics and Propulsion section of Frontiers in Aerospace Engineering looks forward to supporting and disseminating research that addresses the current and future challenges in aerospace propulsion and energetics.