数字光处理简单立方结构晶格声学性能的实验与数值研究

Zhejie Lai, Miao Zhao, C. H. Lim, Jun Wei Chua
{"title":"数字光处理简单立方结构晶格声学性能的实验与数值研究","authors":"Zhejie Lai, Miao Zhao, C. H. Lim, Jun Wei Chua","doi":"10.18063/msam.v1i4.22","DOIUrl":null,"url":null,"abstract":"Sound absorption is one of the important properties of porous materials such as foams and lattices. Many mathematical models in the literature are capable of modeling the acoustic properties of lattices. However, appropriate models need to be chosen for specific lattice structures on a case-by-case basis and require significant experience in acoustic modeling. This work aims to provide simplified insights into different mathematical models for the simple cubic lattice. The strut lengths and radii of the unit cells were varied, and the sound absorption properties were measured using an impedance tube. The sound absorption coefficients of the lattices generally increased and exhibited more resonant-like behavior as the strut radius increased. The Delany-Bazley (DB) model and the multi-layered micropore-cavity (MMC) model were used to simulate the acoustic properties of the lattices. The correction factors in the MMC were calculated based on empirical relations fitted using experimental data of the design geometry parameters. Results show that the DB model was able to model the sound absorption coefficients for lattice samples with porosities as low as 0.7, while the MMC with resonator theory is a more appropriate acoustics approach for lattices with porosities lower than 0.7. This work will be highly useful for materials researchers who are studying the acoustic properties of novel porous materials, as well as manufacturers of acoustic materials interested in the additive manufacturing of lattice structures for sound absorption and insulation applications.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":" 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental and numerical studies on the acoustic performance of simple cubic structure lattices fabricated by digital light processing\",\"authors\":\"Zhejie Lai, Miao Zhao, C. H. Lim, Jun Wei Chua\",\"doi\":\"10.18063/msam.v1i4.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound absorption is one of the important properties of porous materials such as foams and lattices. Many mathematical models in the literature are capable of modeling the acoustic properties of lattices. However, appropriate models need to be chosen for specific lattice structures on a case-by-case basis and require significant experience in acoustic modeling. This work aims to provide simplified insights into different mathematical models for the simple cubic lattice. The strut lengths and radii of the unit cells were varied, and the sound absorption properties were measured using an impedance tube. The sound absorption coefficients of the lattices generally increased and exhibited more resonant-like behavior as the strut radius increased. The Delany-Bazley (DB) model and the multi-layered micropore-cavity (MMC) model were used to simulate the acoustic properties of the lattices. The correction factors in the MMC were calculated based on empirical relations fitted using experimental data of the design geometry parameters. Results show that the DB model was able to model the sound absorption coefficients for lattice samples with porosities as low as 0.7, while the MMC with resonator theory is a more appropriate acoustics approach for lattices with porosities lower than 0.7. This work will be highly useful for materials researchers who are studying the acoustic properties of novel porous materials, as well as manufacturers of acoustic materials interested in the additive manufacturing of lattice structures for sound absorption and insulation applications.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\" 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18063/msam.v1i4.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18063/msam.v1i4.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

吸声是泡沫、晶格等多孔材料的重要性能之一。文献中的许多数学模型都能够模拟晶格的声学特性。然而,对于特定的晶格结构,需要根据具体情况选择合适的模型,并且需要大量的声学建模经验。这项工作旨在为简单立方晶格的不同数学模型提供简化的见解。改变支杆长度和单元胞的半径,用阻抗管测量吸声性能。随着支杆半径的增大,晶格的吸声系数普遍增大,并表现出更强的类共振特性。采用Delany-Bazley (DB)模型和多层微孔腔(MMC)模型模拟了晶格的声学特性。利用设计几何参数的实验数据拟合经验关系式,计算出MMC的修正系数。结果表明,DB模型能够模拟孔隙率低于0.7的晶格样品的吸声系数,而具有谐振腔理论的MMC模型对于孔隙率低于0.7的晶格样品是更合适的声学方法。这项工作对于正在研究新型多孔材料声学特性的材料研究人员,以及对用于吸声和隔音应用的晶格结构的增材制造感兴趣的声学材料制造商非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical studies on the acoustic performance of simple cubic structure lattices fabricated by digital light processing
Sound absorption is one of the important properties of porous materials such as foams and lattices. Many mathematical models in the literature are capable of modeling the acoustic properties of lattices. However, appropriate models need to be chosen for specific lattice structures on a case-by-case basis and require significant experience in acoustic modeling. This work aims to provide simplified insights into different mathematical models for the simple cubic lattice. The strut lengths and radii of the unit cells were varied, and the sound absorption properties were measured using an impedance tube. The sound absorption coefficients of the lattices generally increased and exhibited more resonant-like behavior as the strut radius increased. The Delany-Bazley (DB) model and the multi-layered micropore-cavity (MMC) model were used to simulate the acoustic properties of the lattices. The correction factors in the MMC were calculated based on empirical relations fitted using experimental data of the design geometry parameters. Results show that the DB model was able to model the sound absorption coefficients for lattice samples with porosities as low as 0.7, while the MMC with resonator theory is a more appropriate acoustics approach for lattices with porosities lower than 0.7. This work will be highly useful for materials researchers who are studying the acoustic properties of novel porous materials, as well as manufacturers of acoustic materials interested in the additive manufacturing of lattice structures for sound absorption and insulation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信