血管提取技术与算法综述

C. Kirbas, Francis K. H. Quek
{"title":"血管提取技术与算法综述","authors":"C. Kirbas, Francis K. H. Quek","doi":"10.1109/BIBE.2003.1188957","DOIUrl":null,"url":null,"abstract":"Vessel segmentation algorithms are critical components of circulatory blood vessel analysis systems. We present a survey of vessel extraction techniques and algorithms, putting the various approaches and techniques in perspective by means of a classification of the existing research. While we target mainly the extraction of blood vessels, neurovascular structure in particular we also review some of the segmentation methods for the tubular objects that show similar characteristics to vessels. We divide vessel segmentation algorithms and techniques into six main categories: (1) pattern recognition techniques, (2) model-based approaches, (3) tracking-based approaches, (4) artificial intelligence-based approaches, (5) neural network-based approaches, and (6) miscellaneous tube-like object detection approaches. Some of these categories are further divided into sub-categories. A table compares the papers against such criteria as dimensionality, input type, preprocessing, user interaction, and result type.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":"{\"title\":\"Vessel extraction techniques and algorithms: a survey\",\"authors\":\"C. Kirbas, Francis K. H. Quek\",\"doi\":\"10.1109/BIBE.2003.1188957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vessel segmentation algorithms are critical components of circulatory blood vessel analysis systems. We present a survey of vessel extraction techniques and algorithms, putting the various approaches and techniques in perspective by means of a classification of the existing research. While we target mainly the extraction of blood vessels, neurovascular structure in particular we also review some of the segmentation methods for the tubular objects that show similar characteristics to vessels. We divide vessel segmentation algorithms and techniques into six main categories: (1) pattern recognition techniques, (2) model-based approaches, (3) tracking-based approaches, (4) artificial intelligence-based approaches, (5) neural network-based approaches, and (6) miscellaneous tube-like object detection approaches. Some of these categories are further divided into sub-categories. A table compares the papers against such criteria as dimensionality, input type, preprocessing, user interaction, and result type.\",\"PeriodicalId\":178814,\"journal\":{\"name\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"164\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2003.1188957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 164

摘要

血管分割算法是循环血管分析系统的关键组成部分。我们提出了血管提取技术和算法的调查,把各种方法和技术的观点,通过现有的研究分类的手段。虽然我们主要针对血管,特别是神经血管结构的提取,但我们也回顾了一些与血管具有相似特征的管状物体的分割方法。我们将血管分割算法和技术分为六大类:(1)模式识别技术,(2)基于模型的方法,(3)基于跟踪的方法,(4)基于人工智能的方法,(5)基于神经网络的方法,(6)杂项管状物体检测方法。其中一些类别又进一步分为子类别。一个表格根据诸如维度、输入类型、预处理、用户交互和结果类型等标准对论文进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vessel extraction techniques and algorithms: a survey
Vessel segmentation algorithms are critical components of circulatory blood vessel analysis systems. We present a survey of vessel extraction techniques and algorithms, putting the various approaches and techniques in perspective by means of a classification of the existing research. While we target mainly the extraction of blood vessels, neurovascular structure in particular we also review some of the segmentation methods for the tubular objects that show similar characteristics to vessels. We divide vessel segmentation algorithms and techniques into six main categories: (1) pattern recognition techniques, (2) model-based approaches, (3) tracking-based approaches, (4) artificial intelligence-based approaches, (5) neural network-based approaches, and (6) miscellaneous tube-like object detection approaches. Some of these categories are further divided into sub-categories. A table compares the papers against such criteria as dimensionality, input type, preprocessing, user interaction, and result type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信