经济的解剖

T. DeGiovanni, Jason Lutz, Katharine Shultis
{"title":"经济的解剖","authors":"T. DeGiovanni, Jason Lutz, Katharine Shultis","doi":"10.2478/rmm-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract The Wallace-Bolyai-Gerwien theorem states any polygon can be decomposed into a finite number of polygonal pieces that can be translated and rotated to form any polygon of equal area. The theorem was proved in the early 19th century. The minimum number of pieces necessary to form these common dissections remains an open question. In 1905, Henry Dudney demonstrated a four-piece common dissection between a square and equilateral triangle. We investigate the possible existence of a three-piece common dissection. Specifically, we prove that there does not exist a three-piece common dissection using only convex polygons.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economical Dissections\",\"authors\":\"T. DeGiovanni, Jason Lutz, Katharine Shultis\",\"doi\":\"10.2478/rmm-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Wallace-Bolyai-Gerwien theorem states any polygon can be decomposed into a finite number of polygonal pieces that can be translated and rotated to form any polygon of equal area. The theorem was proved in the early 19th century. The minimum number of pieces necessary to form these common dissections remains an open question. In 1905, Henry Dudney demonstrated a four-piece common dissection between a square and equilateral triangle. We investigate the possible existence of a three-piece common dissection. Specifically, we prove that there does not exist a three-piece common dissection using only convex polygons.\",\"PeriodicalId\":120489,\"journal\":{\"name\":\"Recreational Mathematics Magazine\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recreational Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rmm-2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Wallace-Bolyai-Gerwien定理指出,任何多边形都可以分解成有限数量的多边形块,这些多边形块可以被平移和旋转形成任何等面积的多边形。这个定理是在19世纪初被证明的。形成这些常见解剖所需的最小碎片数量仍然是一个悬而未决的问题。1905年,亨利·杜尼(Henry Dudney)展示了正方形和等边三角形之间的四段式普通解剖。我们研究可能存在的三段式普通解剖。具体地说,我们证明了仅用凸多边形不存在三片共剖分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Economical Dissections
Abstract The Wallace-Bolyai-Gerwien theorem states any polygon can be decomposed into a finite number of polygonal pieces that can be translated and rotated to form any polygon of equal area. The theorem was proved in the early 19th century. The minimum number of pieces necessary to form these common dissections remains an open question. In 1905, Henry Dudney demonstrated a four-piece common dissection between a square and equilateral triangle. We investigate the possible existence of a three-piece common dissection. Specifically, we prove that there does not exist a three-piece common dissection using only convex polygons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信