基于移动App用户评论的软件需求分类方法实证研究

Huan Jin, Hongyan Wan, Ziruo Li, Wenxuan Wang
{"title":"基于移动App用户评论的软件需求分类方法实证研究","authors":"Huan Jin, Hongyan Wan, Ziruo Li, Wenxuan Wang","doi":"10.1109/QRS-C57518.2022.00085","DOIUrl":null,"url":null,"abstract":"User comments are one of the main ways for IT companies to obtain software evolution requirements. There are two major methods used to classify the software requirements: the traditional user requirements mining method and the user comments requirements mining. The advantage of traditional user requirements mining is that it can communicate with users face to face, but it is time consuming and the results may not be accurate. Therefore, in this paper, we use the user comments requirements mining method to compare the labeling effect of classification methods on the data set of 19,673 comments. The experimental results show that the combination of TF-IDF and logistic regression (LR) works best on the labeled dataset. This experiment combined with word cloud map has excellent effect on obtaining user requirements.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Study on Software Requirements Classification Method based on Mobile App User Comments\",\"authors\":\"Huan Jin, Hongyan Wan, Ziruo Li, Wenxuan Wang\",\"doi\":\"10.1109/QRS-C57518.2022.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User comments are one of the main ways for IT companies to obtain software evolution requirements. There are two major methods used to classify the software requirements: the traditional user requirements mining method and the user comments requirements mining. The advantage of traditional user requirements mining is that it can communicate with users face to face, but it is time consuming and the results may not be accurate. Therefore, in this paper, we use the user comments requirements mining method to compare the labeling effect of classification methods on the data set of 19,673 comments. The experimental results show that the combination of TF-IDF and logistic regression (LR) works best on the labeled dataset. This experiment combined with word cloud map has excellent effect on obtaining user requirements.\",\"PeriodicalId\":183728,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C57518.2022.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用户评论是IT公司获取软件演进需求的主要途径之一。软件需求分类主要有两种方法:传统的用户需求挖掘方法和用户评论需求挖掘方法。传统的用户需求挖掘的优点是可以与用户进行面对面的交流,但费时且结果可能不准确。因此,在本文中,我们使用用户评论需求挖掘方法来比较分类方法对19673条评论数据集的标注效果。实验结果表明,TF-IDF和逻辑回归(LR)相结合在标记数据集上效果最好。该实验结合词云图对获取用户需求有很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Study on Software Requirements Classification Method based on Mobile App User Comments
User comments are one of the main ways for IT companies to obtain software evolution requirements. There are two major methods used to classify the software requirements: the traditional user requirements mining method and the user comments requirements mining. The advantage of traditional user requirements mining is that it can communicate with users face to face, but it is time consuming and the results may not be accurate. Therefore, in this paper, we use the user comments requirements mining method to compare the labeling effect of classification methods on the data set of 19,673 comments. The experimental results show that the combination of TF-IDF and logistic regression (LR) works best on the labeled dataset. This experiment combined with word cloud map has excellent effect on obtaining user requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信