氡捕集器参数影响的研究

Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo
{"title":"氡捕集器参数影响的研究","authors":"Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo","doi":"10.11648/J.AJPA.20190704.13","DOIUrl":null,"url":null,"abstract":"Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"47 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on the Influence of Radon Collector Parame\",\"authors\":\"Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo\",\"doi\":\"10.11648/J.AJPA.20190704.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"47 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20190704.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190704.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

准确测量建筑材料的氡释放率对控制室内氡浓度具有重要作用。为了实现氡呼出量的快速准确测量,研究了氡收集器体积、基面积和泵送流量对氡呼出率的影响,优化了氡呼出率的测量参数,提高了氡呼出率的测量效率。研究表明,在恒定抽气流量和地表沉淀速率下测量氡呼出率时,氡收集器体积越大,氡浓度平衡时间越长,而氡收集器体积对氡平衡浓度的影响可以忽略不计,但氡平衡浓度与氡收集器基底面积之间存在特定的线性关系。当氡收集器体积和基面积恒定时,抽气流量越大,氡浓度平衡时间越短,氡平衡浓度越小。实验中氡呼出率为3.9Bq∙m-2∙s-1时,氡捕集器的最佳容积为2.1×10-3m3,最佳底面积为3.46×10-2m-2,最佳抽气流量为1.349×10-5m3/s。通过该优化方法,可以得到不同氡释放率下氡收集器的最佳容积和基面积以及泵送流量等氡释放率的测量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the Influence of Radon Collector Parame
Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信