Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo
{"title":"氡捕集器参数影响的研究","authors":"Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo","doi":"10.11648/J.AJPA.20190704.13","DOIUrl":null,"url":null,"abstract":"Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"47 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on the Influence of Radon Collector Parame\",\"authors\":\"Shangting Jiang, J. Shan, Hui Yang, Jinglin Li, Songsong Li, Tao Guo\",\"doi\":\"10.11648/J.AJPA.20190704.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"47 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20190704.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190704.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate measurement of radon exhalation rate of building materials plays an important role in controlling indoor radon concentration. In order to achieve rapid and accurate measurement of radon exhalation, the influence of the volume, base area and pumping flow rate of radon collector on radon exhalation rate was studied to optimize the measurement parameters of radon exhalation rate and improve the measurement efficiency of radon exhalation rate. The study has shown that the larger the volume of radon collector is, the longer the radon concentration equilibrium time will be when radon exhalation rate is measured with constant pumping flow rate and surface precipitation rate, while the influence of the volume of radon collector on the equilibrium radon concentration can be neglected, but there is a specific linear relationship between the equilibrium radon concentration and the base area of radon collector. When the radon exhalation rate is measured with constant volume and base area of radon collector, the higher the pumping flow rate is, the shorter the radon concentration equilibrium time is and the smaller the equilibrium radon concentration is. When the radon exhalation rate is 3.9Bq∙m-2∙s-1 in the experiment, the optimum volume of radon collector is 2.1×10-3m3, the optimum base area is 3.46×10-2m-2, and the optimum pumping flow rate is 1.349×10-5m3/s. The measurement parameters of the radon exhalation rate, such as the best volume and base area of radon collector and the pumping flow rate can be obtained for different radon exhalation rates through this optimization method.