基于熵的机器学习系统测试生成和数据质量评估

Sakshi Udeshi, Xingbin Jiang, Sudipta Chattopadhyay
{"title":"基于熵的机器学习系统测试生成和数据质量评估","authors":"Sakshi Udeshi, Xingbin Jiang, Sudipta Chattopadhyay","doi":"10.1109/icst46399.2020.00060","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) has seen massive progress in the last decade and as a result, there is a pressing need for validating ML-based systems. To this end, we propose, design and evaluate CALLISTO– a novel test generation and data quality assessment framework. To the best of our knowledge, CALLISTO is the first black box framework to leverage the uncertainty in the prediction and systematically generate new test cases for ML classifiers. Our evaluation of CALLISTO on four real world data sets reveals thousands of errors. We also show that leveraging the uncertainty in prediction can increase the number of erroneous test cases up to a factor of 20, as compared to when no such knowledge is used for testing.CALLISTO has the capability to detect low quality data in the datasets that may contain mislabelled data. We conduct and present an extensive user study to validate the results of CALLISTO on identifying low quality data from four state-of-the-art real world datasets.","PeriodicalId":235967,"journal":{"name":"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Callisto: Entropy-based Test Generation and Data Quality Assessment for Machine Learning Systems\",\"authors\":\"Sakshi Udeshi, Xingbin Jiang, Sudipta Chattopadhyay\",\"doi\":\"10.1109/icst46399.2020.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) has seen massive progress in the last decade and as a result, there is a pressing need for validating ML-based systems. To this end, we propose, design and evaluate CALLISTO– a novel test generation and data quality assessment framework. To the best of our knowledge, CALLISTO is the first black box framework to leverage the uncertainty in the prediction and systematically generate new test cases for ML classifiers. Our evaluation of CALLISTO on four real world data sets reveals thousands of errors. We also show that leveraging the uncertainty in prediction can increase the number of erroneous test cases up to a factor of 20, as compared to when no such knowledge is used for testing.CALLISTO has the capability to detect low quality data in the datasets that may contain mislabelled data. We conduct and present an extensive user study to validate the results of CALLISTO on identifying low quality data from four state-of-the-art real world datasets.\",\"PeriodicalId\":235967,\"journal\":{\"name\":\"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icst46399.2020.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icst46399.2020.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

机器学习(ML)在过去十年中取得了巨大的进步,因此,迫切需要验证基于ML的系统。为此,我们提出,设计和评估CALLISTO -一个新的测试生成和数据质量评估框架。据我们所知,CALLISTO是第一个利用预测中的不确定性并系统地为ML分类器生成新测试用例的黑盒框架。我们在四个真实世界的数据集上对CALLISTO的评估揭示了数千个错误。我们还表明,利用预测中的不确定性可以将错误测试用例的数量增加到20倍,这与不使用此类知识进行测试相比。CALLISTO具有检测数据集中可能包含错误标记数据的低质量数据的能力。我们进行了一项广泛的用户研究,以验证CALLISTO从四个最先进的真实世界数据集中识别低质量数据的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Callisto: Entropy-based Test Generation and Data Quality Assessment for Machine Learning Systems
Machine Learning (ML) has seen massive progress in the last decade and as a result, there is a pressing need for validating ML-based systems. To this end, we propose, design and evaluate CALLISTO– a novel test generation and data quality assessment framework. To the best of our knowledge, CALLISTO is the first black box framework to leverage the uncertainty in the prediction and systematically generate new test cases for ML classifiers. Our evaluation of CALLISTO on four real world data sets reveals thousands of errors. We also show that leveraging the uncertainty in prediction can increase the number of erroneous test cases up to a factor of 20, as compared to when no such knowledge is used for testing.CALLISTO has the capability to detect low quality data in the datasets that may contain mislabelled data. We conduct and present an extensive user study to validate the results of CALLISTO on identifying low quality data from four state-of-the-art real world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信