采用直接接触热交换的冰形成理论模型

D. Chau, P. Phelan, B. Wood
{"title":"采用直接接触热交换的冰形成理论模型","authors":"D. Chau, P. Phelan, B. Wood","doi":"10.1115/imece2000-1286","DOIUrl":null,"url":null,"abstract":"\n Theoretical modeling of a column type of direct contact heat exchanger was performed to predict the refrigerant evaporation and ice formation processes. There are a number of factors influencing the heat transfer rate-dependent evaporation of refrigerant and formation of ice. Among these are the size of the refrigerant droplets as injected, the local temperature and pressure, the heat transfer coefficient, and the temperature difference between the fluids. Differential equations are written for a general location in the flow, which express the conservation of energy and mass for the various species in the multiphase flow. The equations are solved stepwise from the initial injection location of the refrigerant to the location at which the entire refrigerant has become vapor. The theoretical modeling of the refrigerant evaporation and ice crystal growth processes is performed to determine the refrigerant bubble growth rate and the ice crystal growth rate in order to predict the refrigerant evaporation time and the size of the ice crystals.","PeriodicalId":369285,"journal":{"name":"Advances in Enhanced Heat Transfer","volume":"39 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Modeling of Ice Formation Using Direct Contact Heat Exchange\",\"authors\":\"D. Chau, P. Phelan, B. Wood\",\"doi\":\"10.1115/imece2000-1286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Theoretical modeling of a column type of direct contact heat exchanger was performed to predict the refrigerant evaporation and ice formation processes. There are a number of factors influencing the heat transfer rate-dependent evaporation of refrigerant and formation of ice. Among these are the size of the refrigerant droplets as injected, the local temperature and pressure, the heat transfer coefficient, and the temperature difference between the fluids. Differential equations are written for a general location in the flow, which express the conservation of energy and mass for the various species in the multiphase flow. The equations are solved stepwise from the initial injection location of the refrigerant to the location at which the entire refrigerant has become vapor. The theoretical modeling of the refrigerant evaporation and ice crystal growth processes is performed to determine the refrigerant bubble growth rate and the ice crystal growth rate in order to predict the refrigerant evaporation time and the size of the ice crystals.\",\"PeriodicalId\":369285,\"journal\":{\"name\":\"Advances in Enhanced Heat Transfer\",\"volume\":\"39 21\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Enhanced Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Enhanced Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对塔式直接接触式换热器进行了理论建模,预测了制冷剂蒸发和成冰过程。有许多因素影响传热速率依赖的制冷剂蒸发和冰的形成。其中包括注入的制冷剂液滴的大小、当地的温度和压力、传热系数以及流体之间的温差。用微分方程表示了多相流中各种物质的能量和质量守恒。从制冷剂的初始注入位置到整个制冷剂变成蒸汽的位置,逐步求解方程。对冷媒蒸发和冰晶生长过程进行理论建模,确定冷媒气泡生长速率和冰晶生长速率,从而预测冷媒蒸发时间和冰晶大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Modeling of Ice Formation Using Direct Contact Heat Exchange
Theoretical modeling of a column type of direct contact heat exchanger was performed to predict the refrigerant evaporation and ice formation processes. There are a number of factors influencing the heat transfer rate-dependent evaporation of refrigerant and formation of ice. Among these are the size of the refrigerant droplets as injected, the local temperature and pressure, the heat transfer coefficient, and the temperature difference between the fluids. Differential equations are written for a general location in the flow, which express the conservation of energy and mass for the various species in the multiphase flow. The equations are solved stepwise from the initial injection location of the refrigerant to the location at which the entire refrigerant has become vapor. The theoretical modeling of the refrigerant evaporation and ice crystal growth processes is performed to determine the refrigerant bubble growth rate and the ice crystal growth rate in order to predict the refrigerant evaporation time and the size of the ice crystals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信