神经网络在低质量卫星图像分类中的应用

R. Malakhanov, V. Chizhov
{"title":"神经网络在低质量卫星图像分类中的应用","authors":"R. Malakhanov, V. Chizhov","doi":"10.31799/978-5-8088-1554-4-2021-2-44-47","DOIUrl":null,"url":null,"abstract":"The article offers a solution to the problem of classification of low-quality images of aircraft using convolutional neural networks. To solve this problem with sufficient accuracy, an analysis of popular architectural neural networks was performed, and the process of preparing the selected algorithm at all stages was described: preprocessing test data, training the neural network, and processing the results obtained.","PeriodicalId":318959,"journal":{"name":"The Second International Scientific Conference. Collection of reports","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLICATION OF NEURAL NETWORKS IN CLASSIFICATION OF LOW-QUALITY SATELLITE IMAGERY\",\"authors\":\"R. Malakhanov, V. Chizhov\",\"doi\":\"10.31799/978-5-8088-1554-4-2021-2-44-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article offers a solution to the problem of classification of low-quality images of aircraft using convolutional neural networks. To solve this problem with sufficient accuracy, an analysis of popular architectural neural networks was performed, and the process of preparing the selected algorithm at all stages was described: preprocessing test data, training the neural network, and processing the results obtained.\",\"PeriodicalId\":318959,\"journal\":{\"name\":\"The Second International Scientific Conference. Collection of reports\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Second International Scientific Conference. Collection of reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31799/978-5-8088-1554-4-2021-2-44-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Second International Scientific Conference. Collection of reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/978-5-8088-1554-4-2021-2-44-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用卷积神经网络对飞机低质量图像进行分类的方法。为了以足够的精度解决这一问题,对目前流行的建筑神经网络进行了分析,并描述了在各个阶段准备所选算法的过程:预处理测试数据,训练神经网络,处理得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APPLICATION OF NEURAL NETWORKS IN CLASSIFICATION OF LOW-QUALITY SATELLITE IMAGERY
The article offers a solution to the problem of classification of low-quality images of aircraft using convolutional neural networks. To solve this problem with sufficient accuracy, an analysis of popular architectural neural networks was performed, and the process of preparing the selected algorithm at all stages was described: preprocessing test data, training the neural network, and processing the results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信