随机t时间Petri网中的分布半马尔可夫过程

S. Haar
{"title":"随机t时间Petri网中的分布半马尔可夫过程","authors":"S. Haar","doi":"10.1109/PNPM.2003.1231548","DOIUrl":null,"url":null,"abstract":"The heaps of pieces modelling approach (see Gaubert/Mairesse, PNPM'99) admits a (max,+)-linear model for the time consumption, under earliest firing and a given trace, of safe T-timed nets. The present paper shows that this type of model can be extended, using an appropriate partial order semantics under cluster view, to include stochastic choice and timing; we give the algorithmic construction of that semantics and obtain a semi-Markov property in multi-dimensional real time.","PeriodicalId":134699,"journal":{"name":"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed semi-Markov processes in stochastic T-timed Petri nets\",\"authors\":\"S. Haar\",\"doi\":\"10.1109/PNPM.2003.1231548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heaps of pieces modelling approach (see Gaubert/Mairesse, PNPM'99) admits a (max,+)-linear model for the time consumption, under earliest firing and a given trace, of safe T-timed nets. The present paper shows that this type of model can be extended, using an appropriate partial order semantics under cluster view, to include stochastic choice and timing; we give the algorithmic construction of that semantics and obtain a semi-Markov property in multi-dimensional real time.\",\"PeriodicalId\":134699,\"journal\":{\"name\":\"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PNPM.2003.1231548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Workshop on Petri Nets and Performance Models, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PNPM.2003.1231548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

碎片堆建模方法(见Gaubert/Mairesse, PNPM'99)承认,在最早发射和给定轨迹下,安全t时间网的时间消耗是一个(max,+)线性模型。本文证明了这类模型可以在聚类视图下使用适当的偏序语义进行扩展,使其包含随机选择和时序;给出了该语义的算法构造,得到了多维实时的半马尔可夫性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed semi-Markov processes in stochastic T-timed Petri nets
The heaps of pieces modelling approach (see Gaubert/Mairesse, PNPM'99) admits a (max,+)-linear model for the time consumption, under earliest firing and a given trace, of safe T-timed nets. The present paper shows that this type of model can be extended, using an appropriate partial order semantics under cluster view, to include stochastic choice and timing; we give the algorithmic construction of that semantics and obtain a semi-Markov property in multi-dimensional real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信