{"title":"时变瑞利幅值单源的数据辅助DOA估计","authors":"H. Abeida, Tareq Y. Al-Nafouri","doi":"10.5281/ZENODO.42033","DOIUrl":null,"url":null,"abstract":"This paper focuses on the data-aided (DA) direction of arrival (DOA) estimation of a single narrow-band source in time-varying Rayleigh fading amplitude. The time-variant fading amplitude is modeled by considering the Jakes' and the first order autoregressive (AR1) correlation models. Closed-form expressions of the CRB for DOA alone are derived for fast and slow Rayleigh fading amplitude. As a special case, the CRB under uncorrelated fading Rayleigh channel is derived. A analytical approximate expressions of the CRB are derived for low and high SNR that enable the derivation of a number of properties that describe the bound's dependence on key parameters such as SNR, channel correlation. A high signal-to-noise-ratio maximum likelihood (ML) estimator based on the AR1 correlation model is derived. The main objective is to reduce algorithm complexity to a single-dimensional search on the DOA parameter alone as in the static-channel DOA estimator. Finally, simulation results illustrate the performance of the estimator and confirm the validity of the theoretical analysis.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data-aided DOA estimation of single source with time-variant Rayleigh amplitudes\",\"authors\":\"H. Abeida, Tareq Y. Al-Nafouri\",\"doi\":\"10.5281/ZENODO.42033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the data-aided (DA) direction of arrival (DOA) estimation of a single narrow-band source in time-varying Rayleigh fading amplitude. The time-variant fading amplitude is modeled by considering the Jakes' and the first order autoregressive (AR1) correlation models. Closed-form expressions of the CRB for DOA alone are derived for fast and slow Rayleigh fading amplitude. As a special case, the CRB under uncorrelated fading Rayleigh channel is derived. A analytical approximate expressions of the CRB are derived for low and high SNR that enable the derivation of a number of properties that describe the bound's dependence on key parameters such as SNR, channel correlation. A high signal-to-noise-ratio maximum likelihood (ML) estimator based on the AR1 correlation model is derived. The main objective is to reduce algorithm complexity to a single-dimensional search on the DOA parameter alone as in the static-channel DOA estimator. Finally, simulation results illustrate the performance of the estimator and confirm the validity of the theoretical analysis.\",\"PeriodicalId\":409817,\"journal\":{\"name\":\"2010 18th European Signal Processing Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-aided DOA estimation of single source with time-variant Rayleigh amplitudes
This paper focuses on the data-aided (DA) direction of arrival (DOA) estimation of a single narrow-band source in time-varying Rayleigh fading amplitude. The time-variant fading amplitude is modeled by considering the Jakes' and the first order autoregressive (AR1) correlation models. Closed-form expressions of the CRB for DOA alone are derived for fast and slow Rayleigh fading amplitude. As a special case, the CRB under uncorrelated fading Rayleigh channel is derived. A analytical approximate expressions of the CRB are derived for low and high SNR that enable the derivation of a number of properties that describe the bound's dependence on key parameters such as SNR, channel correlation. A high signal-to-noise-ratio maximum likelihood (ML) estimator based on the AR1 correlation model is derived. The main objective is to reduce algorithm complexity to a single-dimensional search on the DOA parameter alone as in the static-channel DOA estimator. Finally, simulation results illustrate the performance of the estimator and confirm the validity of the theoretical analysis.