无人机螺旋桨在不同高度工作的气动声学分析

Ji-Hun Song, S. Jang, Youn-J. Kim
{"title":"无人机螺旋桨在不同高度工作的气动声学分析","authors":"Ji-Hun Song, S. Jang, Youn-J. Kim","doi":"10.1115/fedsm2021-65363","DOIUrl":null,"url":null,"abstract":"\n With technological development and the wide application range of unmanned aerial vehicles (UAVs), the regulation of UAV altitude limits in many countries is further alleviated, and the problem of UAV noise pollution has emerged with the recent advent of urban air mobility (UAM) and personal air vehicle (PAV) markets. In this study, one typical propeller, the T-motor 15 × 5 propeller, was analyzed by use of the commercial CFD software, ANSYS FLUENT V19.3. The effects of gravity and convection were analyzed to determine the noise characteristics at altitude using the FW-H equation. A high-altitude drone, which operates at heights from 0 to 10 km with 1,000 to 5,000 revolutions per minute, was analyzed using the steady-state k-ω SST turbulence model. And using the steady-state data to initialize values, an unsteady analysis was performed with the LES turbulence model. The time step was divided based on the 1-degree rotational time, and the velocity residual on each axis was calculated until a value of 10−7 or less was achieved and there was no fluctuation of thrust, at which point it was considered converged. The CFD results were validated with the experimental results for thrust and their results show that the maximum error was 8.64%. The overall sound pressure level was calculated, and noise characteristics in the audible frequency range according to receiver points were also compared. Through this study, thrust and noise data according to altitude were provided. The aerodynamic and aeroacoustic characteristics at high-altitudes, which are generally difficult to measure by experiment, are also presented. Therefore, the appropriate operating altitudes and rotational speeds will be presented through the aeroacoustics analysis corresponding to operational altitude, and the basic research data can then be applied to upcoming unmanned aircraft system (UAS) market.","PeriodicalId":359619,"journal":{"name":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeroacoustic Analysis of a UAV Propeller Operable at Various Altitudes\",\"authors\":\"Ji-Hun Song, S. Jang, Youn-J. Kim\",\"doi\":\"10.1115/fedsm2021-65363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With technological development and the wide application range of unmanned aerial vehicles (UAVs), the regulation of UAV altitude limits in many countries is further alleviated, and the problem of UAV noise pollution has emerged with the recent advent of urban air mobility (UAM) and personal air vehicle (PAV) markets. In this study, one typical propeller, the T-motor 15 × 5 propeller, was analyzed by use of the commercial CFD software, ANSYS FLUENT V19.3. The effects of gravity and convection were analyzed to determine the noise characteristics at altitude using the FW-H equation. A high-altitude drone, which operates at heights from 0 to 10 km with 1,000 to 5,000 revolutions per minute, was analyzed using the steady-state k-ω SST turbulence model. And using the steady-state data to initialize values, an unsteady analysis was performed with the LES turbulence model. The time step was divided based on the 1-degree rotational time, and the velocity residual on each axis was calculated until a value of 10−7 or less was achieved and there was no fluctuation of thrust, at which point it was considered converged. The CFD results were validated with the experimental results for thrust and their results show that the maximum error was 8.64%. The overall sound pressure level was calculated, and noise characteristics in the audible frequency range according to receiver points were also compared. Through this study, thrust and noise data according to altitude were provided. The aerodynamic and aeroacoustic characteristics at high-altitudes, which are generally difficult to measure by experiment, are also presented. Therefore, the appropriate operating altitudes and rotational speeds will be presented through the aeroacoustics analysis corresponding to operational altitude, and the basic research data can then be applied to upcoming unmanned aircraft system (UAS) market.\",\"PeriodicalId\":359619,\"journal\":{\"name\":\"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/fedsm2021-65363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着技术的发展和无人机的广泛应用范围,许多国家对无人机高度限制的规定进一步放宽,随着城市空中交通(UAM)和个人飞行器(PAV)市场的出现,无人机噪声污染问题也逐渐显现。本研究采用商用CFD软件ANSYS FLUENT V19.3,对典型的t电机15 × 5螺旋桨进行了分析。利用FW-H方程分析了重力和对流的影响,确定了高空噪声特性。使用稳态k-ω海温湍流模型分析了一架飞行高度为0至10公里,转速为1000至5000转/分钟的高空无人机。利用稳态数据进行初始化,利用LES湍流模型进行非定常分析。根据旋转1度的时间划分时间步长,计算每个轴上的速度残差,直到达到10−7或更小的值,并且推力没有波动,此时认为收敛。CFD计算结果与推力实验结果进行了验证,结果表明,最大误差为8.64%。计算总声压级,并比较各接收点可听频率范围内的噪声特性。通过研究,提供了不同高度的推力和噪声数据。文中还介绍了一般难以通过实验测量的高空气动和气动声学特性。因此,将通过与作战高度相对应的气动声学分析,给出合适的作战高度和转速,并将基础研究数据应用于即将到来的无人机系统(UAS)市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aeroacoustic Analysis of a UAV Propeller Operable at Various Altitudes
With technological development and the wide application range of unmanned aerial vehicles (UAVs), the regulation of UAV altitude limits in many countries is further alleviated, and the problem of UAV noise pollution has emerged with the recent advent of urban air mobility (UAM) and personal air vehicle (PAV) markets. In this study, one typical propeller, the T-motor 15 × 5 propeller, was analyzed by use of the commercial CFD software, ANSYS FLUENT V19.3. The effects of gravity and convection were analyzed to determine the noise characteristics at altitude using the FW-H equation. A high-altitude drone, which operates at heights from 0 to 10 km with 1,000 to 5,000 revolutions per minute, was analyzed using the steady-state k-ω SST turbulence model. And using the steady-state data to initialize values, an unsteady analysis was performed with the LES turbulence model. The time step was divided based on the 1-degree rotational time, and the velocity residual on each axis was calculated until a value of 10−7 or less was achieved and there was no fluctuation of thrust, at which point it was considered converged. The CFD results were validated with the experimental results for thrust and their results show that the maximum error was 8.64%. The overall sound pressure level was calculated, and noise characteristics in the audible frequency range according to receiver points were also compared. Through this study, thrust and noise data according to altitude were provided. The aerodynamic and aeroacoustic characteristics at high-altitudes, which are generally difficult to measure by experiment, are also presented. Therefore, the appropriate operating altitudes and rotational speeds will be presented through the aeroacoustics analysis corresponding to operational altitude, and the basic research data can then be applied to upcoming unmanned aircraft system (UAS) market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信