熵和维的不等式

A. Shen
{"title":"熵和维的不等式","authors":"A. Shen","doi":"10.48550/arXiv.2209.07243","DOIUrl":null,"url":null,"abstract":"We show that linear inequalities for entropies have a natural geometric interpretation in terms of Hausdorff and packing dimensions, using the point-to-set principle and known results about inequalities for complexities, entropies and the sizes of subgroups.","PeriodicalId":436783,"journal":{"name":"Conference on Computability in Europe","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities for entropies and dimensions\",\"authors\":\"A. Shen\",\"doi\":\"10.48550/arXiv.2209.07243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that linear inequalities for entropies have a natural geometric interpretation in terms of Hausdorff and packing dimensions, using the point-to-set principle and known results about inequalities for complexities, entropies and the sizes of subgroups.\",\"PeriodicalId\":436783,\"journal\":{\"name\":\"Conference on Computability in Europe\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computability in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.07243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computability in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.07243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用点对集原理和已知的关于复杂度、熵和子群大小的不等式的结果,证明了熵的线性不等式在Hausdorff维数和包装维数方面具有自然的几何解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities for entropies and dimensions
We show that linear inequalities for entropies have a natural geometric interpretation in terms of Hausdorff and packing dimensions, using the point-to-set principle and known results about inequalities for complexities, entropies and the sizes of subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信