相位在基于深度神经网络的语音增强算法中的意义

P. Rani, Sivaganesh Andhavarapu, S. Kodukula
{"title":"相位在基于深度神经网络的语音增强算法中的意义","authors":"P. Rani, Sivaganesh Andhavarapu, S. Kodukula","doi":"10.1109/NCC48643.2020.9056089","DOIUrl":null,"url":null,"abstract":"Most of the speech enhancement algorithms rely on estimating the magnitude spectrum of the clean speech signal from that of the noisy speech signal using either spectral regression or spectral masking. Because of difficulty in processing the phase of the short time Fourier transform (STFT), noisy phase is reused while synthesizing the waveform from the enhanced magnitude spectrum. In order to demonstrate the significance of phase in speech enhancement, we compare the phase obtained from different reconstruction methods, like Griffin and Lim, minimum phase, with that of the gold phase (clean phase). In this work, spectral magnitude mask (SMM) is estimated using deep neural networks to enhance the magnitude spectrum of the speech signal. The experimental results showed that gold phase outperforms the phase reconstruction methods in all the objective measures, illustrating the significance of enhancing the noisy phase in speech enhancement.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Significance of Phase in DNN based speech enhancement algorithms\",\"authors\":\"P. Rani, Sivaganesh Andhavarapu, S. Kodukula\",\"doi\":\"10.1109/NCC48643.2020.9056089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the speech enhancement algorithms rely on estimating the magnitude spectrum of the clean speech signal from that of the noisy speech signal using either spectral regression or spectral masking. Because of difficulty in processing the phase of the short time Fourier transform (STFT), noisy phase is reused while synthesizing the waveform from the enhanced magnitude spectrum. In order to demonstrate the significance of phase in speech enhancement, we compare the phase obtained from different reconstruction methods, like Griffin and Lim, minimum phase, with that of the gold phase (clean phase). In this work, spectral magnitude mask (SMM) is estimated using deep neural networks to enhance the magnitude spectrum of the speech signal. The experimental results showed that gold phase outperforms the phase reconstruction methods in all the objective measures, illustrating the significance of enhancing the noisy phase in speech enhancement.\",\"PeriodicalId\":183772,\"journal\":{\"name\":\"2020 National Conference on Communications (NCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC48643.2020.9056089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大多数语音增强算法依赖于使用频谱回归或频谱掩蔽方法从噪声语音信号中估计干净语音信号的幅度谱。由于短时傅里叶变换(STFT)相位处理困难,在利用增强幅度谱合成波形时重用了噪声相位。为了证明相位在语音增强中的重要性,我们比较了不同重建方法获得的相位,如Griffin和Lim,最小相位与黄金相位(干净相位)。在这项工作中,利用深度神经网络估计频谱幅度掩模(SMM)来增强语音信号的幅度谱。实验结果表明,金相位在所有客观指标上都优于相位重建方法,说明了增强噪声相位在语音增强中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance of Phase in DNN based speech enhancement algorithms
Most of the speech enhancement algorithms rely on estimating the magnitude spectrum of the clean speech signal from that of the noisy speech signal using either spectral regression or spectral masking. Because of difficulty in processing the phase of the short time Fourier transform (STFT), noisy phase is reused while synthesizing the waveform from the enhanced magnitude spectrum. In order to demonstrate the significance of phase in speech enhancement, we compare the phase obtained from different reconstruction methods, like Griffin and Lim, minimum phase, with that of the gold phase (clean phase). In this work, spectral magnitude mask (SMM) is estimated using deep neural networks to enhance the magnitude spectrum of the speech signal. The experimental results showed that gold phase outperforms the phase reconstruction methods in all the objective measures, illustrating the significance of enhancing the noisy phase in speech enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信