一种基于物理和参数学习的船舶变工况能量预测方法

Xingjian Lai, Xiaoning Jin, Xi Gu
{"title":"一种基于物理和参数学习的船舶变工况能量预测方法","authors":"Xingjian Lai, Xiaoning Jin, Xi Gu","doi":"10.1109/COASE.2017.8256263","DOIUrl":null,"url":null,"abstract":"The efficiency of energy consumption of an engineering system dynamically changes during the its operation when the operational and environmental conditions vary in time. Various methods have been developed to monitor the energy consumption rate and predict the consumption efficiency for a given operating condition. The main challenges to maintain the accuracy of modeling and prediction stem from the great diversity of operational and environmental inputs that affect the energy consumption rate dynamically, as well as the lack of a full understanding of the physical relationship between energy efficiency and operation parameters of the system. Operating condition is a key component in system modeling and state identification in many applications because not only the system parameters, but also the structure and complexity of a model might vary significantly during different operation modes. This paper investigates a novel method that integrates a physics-based hydrodynamic model and dynamic parameter learning and estimation, using energy consumption monitoring data and operating condition data, in purpose of improving the prediction accuracy of energy consumption. By leveraging the strengths of both the physics-based models and data-driven parameter learning methods, the proposed method is advantageous when the complex system physics is not perfectly known and the performance of system is affected by the environmental operating condition, while abundant monitoring data are available. We demonstrate the model on a ship propulsion system for fuel consumption prediction, which achieves higher prediction accuracy compared with models without operating condition adaption and tuning.","PeriodicalId":445441,"journal":{"name":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An integrated physical-based and parameter learning method for ship energy prediction under varying operating conditions\",\"authors\":\"Xingjian Lai, Xiaoning Jin, Xi Gu\",\"doi\":\"10.1109/COASE.2017.8256263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of energy consumption of an engineering system dynamically changes during the its operation when the operational and environmental conditions vary in time. Various methods have been developed to monitor the energy consumption rate and predict the consumption efficiency for a given operating condition. The main challenges to maintain the accuracy of modeling and prediction stem from the great diversity of operational and environmental inputs that affect the energy consumption rate dynamically, as well as the lack of a full understanding of the physical relationship between energy efficiency and operation parameters of the system. Operating condition is a key component in system modeling and state identification in many applications because not only the system parameters, but also the structure and complexity of a model might vary significantly during different operation modes. This paper investigates a novel method that integrates a physics-based hydrodynamic model and dynamic parameter learning and estimation, using energy consumption monitoring data and operating condition data, in purpose of improving the prediction accuracy of energy consumption. By leveraging the strengths of both the physics-based models and data-driven parameter learning methods, the proposed method is advantageous when the complex system physics is not perfectly known and the performance of system is affected by the environmental operating condition, while abundant monitoring data are available. We demonstrate the model on a ship propulsion system for fuel consumption prediction, which achieves higher prediction accuracy compared with models without operating condition adaption and tuning.\",\"PeriodicalId\":445441,\"journal\":{\"name\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2017.8256263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2017.8256263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

工程系统在运行过程中,随着运行条件和环境条件的变化,其能耗效率是动态变化的。在给定的运行条件下,已经开发了各种方法来监测能耗率和预测能耗效率。维持建模和预测准确性的主要挑战源于动态影响能源消耗率的操作和环境输入的多样性,以及对能源效率和系统运行参数之间的物理关系缺乏充分理解。在许多应用中,运行状态是系统建模和状态识别的关键组成部分,因为在不同的运行模式下,不仅系统参数,而且模型的结构和复杂性都可能有很大的变化。本文研究了一种将基于物理的水动力模型与动态参数学习与估计相结合,利用能耗监测数据和运行工况数据,提高能耗预测精度的新方法。利用基于物理的模型和数据驱动的参数学习方法的优势,该方法在复杂系统物理不完全了解、系统性能受环境运行条件影响、监测数据丰富的情况下具有优势。将该模型应用于船舶推进系统的油耗预测,与不进行工况自适应和自整定的模型相比,该模型具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integrated physical-based and parameter learning method for ship energy prediction under varying operating conditions
The efficiency of energy consumption of an engineering system dynamically changes during the its operation when the operational and environmental conditions vary in time. Various methods have been developed to monitor the energy consumption rate and predict the consumption efficiency for a given operating condition. The main challenges to maintain the accuracy of modeling and prediction stem from the great diversity of operational and environmental inputs that affect the energy consumption rate dynamically, as well as the lack of a full understanding of the physical relationship between energy efficiency and operation parameters of the system. Operating condition is a key component in system modeling and state identification in many applications because not only the system parameters, but also the structure and complexity of a model might vary significantly during different operation modes. This paper investigates a novel method that integrates a physics-based hydrodynamic model and dynamic parameter learning and estimation, using energy consumption monitoring data and operating condition data, in purpose of improving the prediction accuracy of energy consumption. By leveraging the strengths of both the physics-based models and data-driven parameter learning methods, the proposed method is advantageous when the complex system physics is not perfectly known and the performance of system is affected by the environmental operating condition, while abundant monitoring data are available. We demonstrate the model on a ship propulsion system for fuel consumption prediction, which achieves higher prediction accuracy compared with models without operating condition adaption and tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信