基于多尺度图像和数据增强的卷积神经网络中草药分类

Tianhao Li, Fengyang Sun, R. Sun, Lin Wang, Meihui Li, Huawei Yang
{"title":"基于多尺度图像和数据增强的卷积神经网络中草药分类","authors":"Tianhao Li, Fengyang Sun, R. Sun, Lin Wang, Meihui Li, Huawei Yang","doi":"10.1109/SPAC46244.2018.8965566","DOIUrl":null,"url":null,"abstract":"Correct use of Chinese herbal medicines is vital to life safety of the patients. Chinese herbal medicine classification is very important for the correct use of Chinese herbal medicines. Traditional methods like microfeature identification and physiochemical identification are inefficient due to the various kinds and different conditions of Chinese herbal medicines. Therefore, we adopt a multiscale convolutional neural network (CNN) model with data augmentation technology to classify Chinese herbal medicines. The data augmentation techniques solve the problem of less data on Chinese herbal medicines. Multiscale technology extracts more useful features for Chinese herbal medicine classification. The experiments show favorable accuracy.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"468 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chinese Herbal Medicine Classification Using Convolutional Neural Network with Multiscale Images and Data Augmentation\",\"authors\":\"Tianhao Li, Fengyang Sun, R. Sun, Lin Wang, Meihui Li, Huawei Yang\",\"doi\":\"10.1109/SPAC46244.2018.8965566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct use of Chinese herbal medicines is vital to life safety of the patients. Chinese herbal medicine classification is very important for the correct use of Chinese herbal medicines. Traditional methods like microfeature identification and physiochemical identification are inefficient due to the various kinds and different conditions of Chinese herbal medicines. Therefore, we adopt a multiscale convolutional neural network (CNN) model with data augmentation technology to classify Chinese herbal medicines. The data augmentation techniques solve the problem of less data on Chinese herbal medicines. Multiscale technology extracts more useful features for Chinese herbal medicine classification. The experiments show favorable accuracy.\",\"PeriodicalId\":360369,\"journal\":{\"name\":\"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"468 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC46244.2018.8965566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

正确使用中草药对患者的生命安全至关重要。中草药分类对正确使用中草药非常重要。由于中药材种类繁多、条件各异,传统的微特征鉴定、理化鉴定等方法效率低下。因此,我们采用多尺度卷积神经网络(CNN)模型和数据增强技术对中草药进行分类。数据增强技术解决了中药数据少的问题。多尺度技术为中药材分类提取了更多有用的特征。实验结果表明,该方法具有良好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Herbal Medicine Classification Using Convolutional Neural Network with Multiscale Images and Data Augmentation
Correct use of Chinese herbal medicines is vital to life safety of the patients. Chinese herbal medicine classification is very important for the correct use of Chinese herbal medicines. Traditional methods like microfeature identification and physiochemical identification are inefficient due to the various kinds and different conditions of Chinese herbal medicines. Therefore, we adopt a multiscale convolutional neural network (CNN) model with data augmentation technology to classify Chinese herbal medicines. The data augmentation techniques solve the problem of less data on Chinese herbal medicines. Multiscale technology extracts more useful features for Chinese herbal medicine classification. The experiments show favorable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信