基于视频的考场异常行为检测

Lu Yong, He Dongjian
{"title":"基于视频的考场异常行为检测","authors":"Lu Yong, He Dongjian","doi":"10.1109/IFITA.2010.139","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of partial occlusion and background clutter in the examination room, we propose a method for behavior detection using spatial-temporal shape and flow correlation. The method first extracted training templates using interactive video cutout technique, and automatically segmented the video into 3D spatial-temporal volumes using improved Mean Shift algorithm. Then we slide the template across the video and compute the matching distance. We complement our shape-based features with flow, and efficiently match the volumetric representation of an action against over-segmented spatial-temporal video volumes. Thresholding the correlation distance and finding the peaks give us locations of potential matches. The experiment results indicate that this method achieves human’s action detection robustly in crowded, dynamic environment.","PeriodicalId":393802,"journal":{"name":"2010 International Forum on Information Technology and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Video-Based Detection of Abnormal Behavior in the Examination Room\",\"authors\":\"Lu Yong, He Dongjian\",\"doi\":\"10.1109/IFITA.2010.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of partial occlusion and background clutter in the examination room, we propose a method for behavior detection using spatial-temporal shape and flow correlation. The method first extracted training templates using interactive video cutout technique, and automatically segmented the video into 3D spatial-temporal volumes using improved Mean Shift algorithm. Then we slide the template across the video and compute the matching distance. We complement our shape-based features with flow, and efficiently match the volumetric representation of an action against over-segmented spatial-temporal video volumes. Thresholding the correlation distance and finding the peaks give us locations of potential matches. The experiment results indicate that this method achieves human’s action detection robustly in crowded, dynamic environment.\",\"PeriodicalId\":393802,\"journal\":{\"name\":\"2010 International Forum on Information Technology and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Forum on Information Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFITA.2010.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Forum on Information Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFITA.2010.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对考场中存在的部分遮挡和背景杂波问题,提出了一种基于时空形状和流相关的行为检测方法。该方法首先利用交互式视频剪切技术提取训练模板,并利用改进的Mean Shift算法将视频自动分割成三维时空体。然后我们在视频中滑动模板并计算匹配距离。我们用流来补充基于形状的特征,并有效地将动作的体积表示与过度分割的时空视频量相匹配。对相关距离设定阈值并找到峰值,就可以得到潜在匹配的位置。实验结果表明,该方法能够在拥挤、动态的环境中实现对人体动作的鲁棒性检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video-Based Detection of Abnormal Behavior in the Examination Room
Aiming at the problems of partial occlusion and background clutter in the examination room, we propose a method for behavior detection using spatial-temporal shape and flow correlation. The method first extracted training templates using interactive video cutout technique, and automatically segmented the video into 3D spatial-temporal volumes using improved Mean Shift algorithm. Then we slide the template across the video and compute the matching distance. We complement our shape-based features with flow, and efficiently match the volumetric representation of an action against over-segmented spatial-temporal video volumes. Thresholding the correlation distance and finding the peaks give us locations of potential matches. The experiment results indicate that this method achieves human’s action detection robustly in crowded, dynamic environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信