{"title":"组织谐波脉冲压缩成像的频率相关衰减补偿","authors":"N. Tagawa, Takuya Hiraoka, I. Akiyama","doi":"10.5772/INTECHOPEN.74577","DOIUrl":null,"url":null,"abstract":"Tissue harmonic imaging (THI) is highly effective for correct diagnosis. On the other hand, pulse compression is often used in a radar system and an ultrasound imaging system to perform high SNR measurement. Therefore, the performance of pulse compression of tissue harmonic imaging is required to be improved. The frequency-dependent attenuation (FDA) is a crucial problem in medical tissue imaging. In the pulse compression imaging, the deterioration of echoes by the FDA lowers the performance of a matched filtering using an ideal transmitted pulse as a template signal. Since, especially in the harmonic imaging, higher-frequency components are used for imaging than the fundamental imaging, the compensation of the FDA is strongly important for high-definition imaging. In this study, we examine a method to reduce the influence of the FDA on harmonics.","PeriodicalId":313869,"journal":{"name":"Compendium of New Techniques in Harmonic Analysis","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compensation of Frequency-Dependent Attenuation for Tissue Harmonic Pulse Compression Imaging\",\"authors\":\"N. Tagawa, Takuya Hiraoka, I. Akiyama\",\"doi\":\"10.5772/INTECHOPEN.74577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue harmonic imaging (THI) is highly effective for correct diagnosis. On the other hand, pulse compression is often used in a radar system and an ultrasound imaging system to perform high SNR measurement. Therefore, the performance of pulse compression of tissue harmonic imaging is required to be improved. The frequency-dependent attenuation (FDA) is a crucial problem in medical tissue imaging. In the pulse compression imaging, the deterioration of echoes by the FDA lowers the performance of a matched filtering using an ideal transmitted pulse as a template signal. Since, especially in the harmonic imaging, higher-frequency components are used for imaging than the fundamental imaging, the compensation of the FDA is strongly important for high-definition imaging. In this study, we examine a method to reduce the influence of the FDA on harmonics.\",\"PeriodicalId\":313869,\"journal\":{\"name\":\"Compendium of New Techniques in Harmonic Analysis\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compendium of New Techniques in Harmonic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.74577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compendium of New Techniques in Harmonic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compensation of Frequency-Dependent Attenuation for Tissue Harmonic Pulse Compression Imaging
Tissue harmonic imaging (THI) is highly effective for correct diagnosis. On the other hand, pulse compression is often used in a radar system and an ultrasound imaging system to perform high SNR measurement. Therefore, the performance of pulse compression of tissue harmonic imaging is required to be improved. The frequency-dependent attenuation (FDA) is a crucial problem in medical tissue imaging. In the pulse compression imaging, the deterioration of echoes by the FDA lowers the performance of a matched filtering using an ideal transmitted pulse as a template signal. Since, especially in the harmonic imaging, higher-frequency components are used for imaging than the fundamental imaging, the compensation of the FDA is strongly important for high-definition imaging. In this study, we examine a method to reduce the influence of the FDA on harmonics.