应用AADL实现多台低成本水下无人潜航器协同的嵌入式控制系统

H. Pham, T. Soriano, V. Ngo
{"title":"应用AADL实现多台低成本水下无人潜航器协同的嵌入式控制系统","authors":"H. Pham, T. Soriano, V. Ngo","doi":"10.1109/OCEANSE.2019.8867198","DOIUrl":null,"url":null,"abstract":"The goal of this study is to realize a component architecture of embedded control systems for coordination of UUV based on a Model Driven Engineering approach. We firstly have studied in end-to-end flow latency and faults for an embedded system of UUV in scenario-case coordinated control of multiple UUVs. A basic declarative model and its instance are then implemented to illustrate a scheduling analysis of the system instance. The abstraction of the complex embedded system is represented in consideration of AADL system, process, and device components. Following on this representation, the run-time composition of all elements, allocate software to hardware resources, and assign values to properties of the elements are detailed for analyzing and creating an instance of coordination system. Specially, it is taken into account for inspecting and developing a controller of low-cost underwater drone such as BlueROV, an open-source platform for a research prototype and educational purposes.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applying AADL to realize embedded control systems for coordination of multiple low-cost underwater drones\",\"authors\":\"H. Pham, T. Soriano, V. Ngo\",\"doi\":\"10.1109/OCEANSE.2019.8867198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study is to realize a component architecture of embedded control systems for coordination of UUV based on a Model Driven Engineering approach. We firstly have studied in end-to-end flow latency and faults for an embedded system of UUV in scenario-case coordinated control of multiple UUVs. A basic declarative model and its instance are then implemented to illustrate a scheduling analysis of the system instance. The abstraction of the complex embedded system is represented in consideration of AADL system, process, and device components. Following on this representation, the run-time composition of all elements, allocate software to hardware resources, and assign values to properties of the elements are detailed for analyzing and creating an instance of coordination system. Specially, it is taken into account for inspecting and developing a controller of low-cost underwater drone such as BlueROV, an open-source platform for a research prototype and educational purposes.\",\"PeriodicalId\":375793,\"journal\":{\"name\":\"OCEANS 2019 - Marseille\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 - Marseille\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSE.2019.8867198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目标是基于模型驱动工程的方法,实现嵌入式无人潜航器协调控制系统的组件架构。我们首先研究了嵌入式UUV系统在多UUV场景-案例协同控制中的端到端流延迟和故障。然后实现一个基本的声明性模型及其实例,以说明系统实例的调度分析。从AADL系统、过程和器件组件三个方面对复杂嵌入式系统进行了抽象。在此表示之后,所有元素的运行时组合,将软件分配到硬件资源,并将值分配给元素的属性,这些都是用于分析和创建协调系统实例的详细信息。特别是考虑到检查和开发低成本水下无人机的控制器,如BlueROV,一个用于研究原型和教育目的的开源平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying AADL to realize embedded control systems for coordination of multiple low-cost underwater drones
The goal of this study is to realize a component architecture of embedded control systems for coordination of UUV based on a Model Driven Engineering approach. We firstly have studied in end-to-end flow latency and faults for an embedded system of UUV in scenario-case coordinated control of multiple UUVs. A basic declarative model and its instance are then implemented to illustrate a scheduling analysis of the system instance. The abstraction of the complex embedded system is represented in consideration of AADL system, process, and device components. Following on this representation, the run-time composition of all elements, allocate software to hardware resources, and assign values to properties of the elements are detailed for analyzing and creating an instance of coordination system. Specially, it is taken into account for inspecting and developing a controller of low-cost underwater drone such as BlueROV, an open-source platform for a research prototype and educational purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信