用于协同估计的纠缠卡尔曼滤波

C. Mosquera, S. Jayaweera
{"title":"用于协同估计的纠缠卡尔曼滤波","authors":"C. Mosquera, S. Jayaweera","doi":"10.1109/SAM.2008.4606872","DOIUrl":null,"url":null,"abstract":"In this paper we propose a distributed estimation scheme for tracking the state of a Gauss-Markov model by means of independent observations at sensors connected in a network. Our emphasis is on low communication demands to alleviate the burden on eventually battery-powered sensors, which will limit the achievable performance with respect to an ideal centralized Kalman filter with access to all sensors measurements. The cooperation is performed in a distributed way to guarantee scalability and robustness to failures, and it is designed to reduce the detrimental effects of the channel noise on the sensor exchanges.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"25 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Entangled Kalman filters for cooperative estimation\",\"authors\":\"C. Mosquera, S. Jayaweera\",\"doi\":\"10.1109/SAM.2008.4606872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a distributed estimation scheme for tracking the state of a Gauss-Markov model by means of independent observations at sensors connected in a network. Our emphasis is on low communication demands to alleviate the burden on eventually battery-powered sensors, which will limit the achievable performance with respect to an ideal centralized Kalman filter with access to all sensors measurements. The cooperation is performed in a distributed way to guarantee scalability and robustness to failures, and it is designed to reduce the detrimental effects of the channel noise on the sensor exchanges.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"25 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种利用网络中连接的传感器的独立观测来跟踪高斯-马尔可夫模型状态的分布式估计方案。我们的重点是低通信需求,以减轻最终由电池供电的传感器的负担,这将限制相对于理想的集中式卡尔曼滤波器的可实现性能,并访问所有传感器的测量。协作以分布式方式进行,以保证可扩展性和对故障的鲁棒性,并旨在减少信道噪声对传感器交换的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entangled Kalman filters for cooperative estimation
In this paper we propose a distributed estimation scheme for tracking the state of a Gauss-Markov model by means of independent observations at sensors connected in a network. Our emphasis is on low communication demands to alleviate the burden on eventually battery-powered sensors, which will limit the achievable performance with respect to an ideal centralized Kalman filter with access to all sensors measurements. The cooperation is performed in a distributed way to guarantee scalability and robustness to failures, and it is designed to reduce the detrimental effects of the channel noise on the sensor exchanges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信