辐射供暖系统深度强化学习控制的实际实现与评价

Zhiang Zhang, K. Lam
{"title":"辐射供暖系统深度强化学习控制的实际实现与评价","authors":"Zhiang Zhang, K. Lam","doi":"10.1145/3276774.3276775","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning (DRL) has become a popular optimal control method in recent years. This is mainly because DRL has the potential to solve the optimal control problems with complex process dynamics, such as the optimal control for heating, ventilation, and air-conditioning (HVAC) systems. However, DRL control for HVAC systems has not been well studied. There is limited research on the real-life implementation and evaluation of this method. This study implements and deploys a DRL control method for a radiant heating system in a real-life office building for energy efficiency. A physics-based model for the heating system is first created and then calibrated using the measured building operation data. After that, the model is used as a simulator to train the DRL agent. The trained agent is then deployed in the actual heating system, and a smartphone App is used to let the occupants submit their thermal preferences to the DRL agent. It is found the DRL control method can save 16.6% to 18.2% heating demand compared to the old rule-based control logic over the three-month deployment period. However, several limitations of this study are found, such as the low participation rate of the App-based thermal preference feedback system, inefficient DRL training, and the requirement for a large amount of building data.","PeriodicalId":294697,"journal":{"name":"Proceedings of the 5th Conference on Systems for Built Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Practical implementation and evaluation of deep reinforcement learning control for a radiant heating system\",\"authors\":\"Zhiang Zhang, K. Lam\",\"doi\":\"10.1145/3276774.3276775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep reinforcement learning (DRL) has become a popular optimal control method in recent years. This is mainly because DRL has the potential to solve the optimal control problems with complex process dynamics, such as the optimal control for heating, ventilation, and air-conditioning (HVAC) systems. However, DRL control for HVAC systems has not been well studied. There is limited research on the real-life implementation and evaluation of this method. This study implements and deploys a DRL control method for a radiant heating system in a real-life office building for energy efficiency. A physics-based model for the heating system is first created and then calibrated using the measured building operation data. After that, the model is used as a simulator to train the DRL agent. The trained agent is then deployed in the actual heating system, and a smartphone App is used to let the occupants submit their thermal preferences to the DRL agent. It is found the DRL control method can save 16.6% to 18.2% heating demand compared to the old rule-based control logic over the three-month deployment period. However, several limitations of this study are found, such as the low participation rate of the App-based thermal preference feedback system, inefficient DRL training, and the requirement for a large amount of building data.\",\"PeriodicalId\":294697,\"journal\":{\"name\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Conference on Systems for Built Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3276774.3276775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Conference on Systems for Built Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276774.3276775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

近年来,深度强化学习(DRL)已成为一种流行的最优控制方法。这主要是因为DRL具有解决复杂过程动力学的最优控制问题的潜力,例如供热、通风和空调(HVAC)系统的最优控制。然而,对暖通空调系统的DRL控制还没有很好的研究。对该方法在现实生活中的实施和评价的研究有限。本研究针对实际办公建筑的辐射供暖系统,实施并部署了一种DRL控制方法,以提高能源效率。首先创建一个基于物理的供暖系统模型,然后使用测量的建筑运行数据进行校准。然后,将该模型作为模拟器来训练DRL代理。经过训练的代理随后被部署在实际的供暖系统中,并使用智能手机应用程序让居住者向DRL代理提交他们的热偏好。研究发现,在3个月的部署期内,与旧的基于规则的控制逻辑相比,DRL控制方法可节省16.6%至18.2%的供暖需求。然而,本研究也存在一些局限性,如基于app的热偏好反馈系统参与率低、DRL训练效率低、需要大量的建筑数据等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical implementation and evaluation of deep reinforcement learning control for a radiant heating system
Deep reinforcement learning (DRL) has become a popular optimal control method in recent years. This is mainly because DRL has the potential to solve the optimal control problems with complex process dynamics, such as the optimal control for heating, ventilation, and air-conditioning (HVAC) systems. However, DRL control for HVAC systems has not been well studied. There is limited research on the real-life implementation and evaluation of this method. This study implements and deploys a DRL control method for a radiant heating system in a real-life office building for energy efficiency. A physics-based model for the heating system is first created and then calibrated using the measured building operation data. After that, the model is used as a simulator to train the DRL agent. The trained agent is then deployed in the actual heating system, and a smartphone App is used to let the occupants submit their thermal preferences to the DRL agent. It is found the DRL control method can save 16.6% to 18.2% heating demand compared to the old rule-based control logic over the three-month deployment period. However, several limitations of this study are found, such as the low participation rate of the App-based thermal preference feedback system, inefficient DRL training, and the requirement for a large amount of building data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信