Min Zhu, David G. M. Mitchell, M. Lentmaier, D. Costello, B. Bai
{"title":"编织卷积码的窗口解码","authors":"Min Zhu, David G. M. Mitchell, M. Lentmaier, D. Costello, B. Bai","doi":"10.1109/ITWF.2015.7360751","DOIUrl":null,"url":null,"abstract":"We consider a window decoding scheme for Braided Convolutional Codes (BCCs) based on the BCJR algorithm. We describe the principle of this decoding scheme and show that BCCs with window decoding exhibit excellent performance. The tradeoff between performance and decoding latency is examined and, to reduce decoding complexity, both uniform and nonuniform message passing schedules within the decoding window are considered. Finally, puncturing is employed to obtain rate-compatible code rates of 1/2 and 2/3 starting from a rate 1/3 example mother code. Simulation results show that, with nonuniform message passing and puncturing, near capacity performance can be maintained throughout the rate range considered with reasonable decoding complexity and no visible error floors.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Window decoding of Braided Convolutional Codes\",\"authors\":\"Min Zhu, David G. M. Mitchell, M. Lentmaier, D. Costello, B. Bai\",\"doi\":\"10.1109/ITWF.2015.7360751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a window decoding scheme for Braided Convolutional Codes (BCCs) based on the BCJR algorithm. We describe the principle of this decoding scheme and show that BCCs with window decoding exhibit excellent performance. The tradeoff between performance and decoding latency is examined and, to reduce decoding complexity, both uniform and nonuniform message passing schedules within the decoding window are considered. Finally, puncturing is employed to obtain rate-compatible code rates of 1/2 and 2/3 starting from a rate 1/3 example mother code. Simulation results show that, with nonuniform message passing and puncturing, near capacity performance can be maintained throughout the rate range considered with reasonable decoding complexity and no visible error floors.\",\"PeriodicalId\":281890,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITWF.2015.7360751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a window decoding scheme for Braided Convolutional Codes (BCCs) based on the BCJR algorithm. We describe the principle of this decoding scheme and show that BCCs with window decoding exhibit excellent performance. The tradeoff between performance and decoding latency is examined and, to reduce decoding complexity, both uniform and nonuniform message passing schedules within the decoding window are considered. Finally, puncturing is employed to obtain rate-compatible code rates of 1/2 and 2/3 starting from a rate 1/3 example mother code. Simulation results show that, with nonuniform message passing and puncturing, near capacity performance can be maintained throughout the rate range considered with reasonable decoding complexity and no visible error floors.