Nazila Karimian Sichani, Moein Ahmadi, E. Raei, M. Alaee-Kerahroodi, B. M. R., E. Mehrshahi, Seyyed Ali Ghorashi
{"title":"FMCW和PMCW 4d成像汽车雷达传感器波形选择","authors":"Nazila Karimian Sichani, Moein Ahmadi, E. Raei, M. Alaee-Kerahroodi, B. M. R., E. Mehrshahi, Seyyed Ali Ghorashi","doi":"10.1109/RadarConf2351548.2023.10149733","DOIUrl":null,"url":null,"abstract":"The emerging 4D-imaging automotive MIMO radar sensors necessitate the selection of appropriate transmit wave-forms, which should be separable on the receive side in addition to having low auto-correlation sidelobes. TDM, FDM, DDM, and inter-chirp CDM approaches have traditionally been proposed for FMCW radar sensors to ensure the orthogonality of the transmit signals. However, as the number of transmit antennas increases, each of the aforementioned approaches suffers from some drawbacks, which are described in this paper. PMCW radars, on the other hand, can be considered to be more costly to implement, have been proposed to provide better performance and allow for the use of waveform optimization techniques. In this context, we use a block gradient descent approach to design a waveform set for MIMO-PMCW that is optimized based on weighted integrated sidelobe level in this paper, and we show that the proposed waveform outperforms conventional MIMO-FMCW approaches by performing comparative simulations.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waveform Selection for FMCW and PMCW 4D-Imaging Automotive Radar Sensors\",\"authors\":\"Nazila Karimian Sichani, Moein Ahmadi, E. Raei, M. Alaee-Kerahroodi, B. M. R., E. Mehrshahi, Seyyed Ali Ghorashi\",\"doi\":\"10.1109/RadarConf2351548.2023.10149733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging 4D-imaging automotive MIMO radar sensors necessitate the selection of appropriate transmit wave-forms, which should be separable on the receive side in addition to having low auto-correlation sidelobes. TDM, FDM, DDM, and inter-chirp CDM approaches have traditionally been proposed for FMCW radar sensors to ensure the orthogonality of the transmit signals. However, as the number of transmit antennas increases, each of the aforementioned approaches suffers from some drawbacks, which are described in this paper. PMCW radars, on the other hand, can be considered to be more costly to implement, have been proposed to provide better performance and allow for the use of waveform optimization techniques. In this context, we use a block gradient descent approach to design a waveform set for MIMO-PMCW that is optimized based on weighted integrated sidelobe level in this paper, and we show that the proposed waveform outperforms conventional MIMO-FMCW approaches by performing comparative simulations.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Waveform Selection for FMCW and PMCW 4D-Imaging Automotive Radar Sensors
The emerging 4D-imaging automotive MIMO radar sensors necessitate the selection of appropriate transmit wave-forms, which should be separable on the receive side in addition to having low auto-correlation sidelobes. TDM, FDM, DDM, and inter-chirp CDM approaches have traditionally been proposed for FMCW radar sensors to ensure the orthogonality of the transmit signals. However, as the number of transmit antennas increases, each of the aforementioned approaches suffers from some drawbacks, which are described in this paper. PMCW radars, on the other hand, can be considered to be more costly to implement, have been proposed to provide better performance and allow for the use of waveform optimization techniques. In this context, we use a block gradient descent approach to design a waveform set for MIMO-PMCW that is optimized based on weighted integrated sidelobe level in this paper, and we show that the proposed waveform outperforms conventional MIMO-FMCW approaches by performing comparative simulations.