基于内容的半监督地理语义聚类和层次的地理空间模式匹配

J. Partyka, L. Khan
{"title":"基于内容的半监督地理语义聚类和层次的地理空间模式匹配","authors":"J. Partyka, L. Khan","doi":"10.1109/ICSC.2011.18","DOIUrl":null,"url":null,"abstract":"The problem of semantic similarity across heterogeneous geospatial data sources continues to attract interest. Semantic similarity across data sources typically involves 1:1 matching of attributes and their instances between tables. Using clustering methods, three distinct challenges remain unaddressed. First, many clustering algorithms rely only on one instance property. Second, a consistent score for an attribute match is not produced. Finally, hierarchical relationships between the data are not considered. To address these, we introduce GeoSim, a tool for determining the semantic similarity between geospatial schemas. GeoSim consists of GeoSimG and GeoSimH. GeoSimG derives clusters from attribute instances based on their geographic and semantic properties. It examines attribute instances in the clusters to calculate a consistent semantic similarity score through entropy-based distribution (EBD). GeoSimH also captures hierarchical relationships between compared tables and attributes. Results from experiments involving multi-jurisdictional geospatial datasets show that GeoSim outperforms several popular semantic similarity approaches.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Content-Based Geospatial Schema Matching Using Semi-supervised Geosemantic Clustering and Hierarchy\",\"authors\":\"J. Partyka, L. Khan\",\"doi\":\"10.1109/ICSC.2011.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of semantic similarity across heterogeneous geospatial data sources continues to attract interest. Semantic similarity across data sources typically involves 1:1 matching of attributes and their instances between tables. Using clustering methods, three distinct challenges remain unaddressed. First, many clustering algorithms rely only on one instance property. Second, a consistent score for an attribute match is not produced. Finally, hierarchical relationships between the data are not considered. To address these, we introduce GeoSim, a tool for determining the semantic similarity between geospatial schemas. GeoSim consists of GeoSimG and GeoSimH. GeoSimG derives clusters from attribute instances based on their geographic and semantic properties. It examines attribute instances in the clusters to calculate a consistent semantic similarity score through entropy-based distribution (EBD). GeoSimH also captures hierarchical relationships between compared tables and attributes. Results from experiments involving multi-jurisdictional geospatial datasets show that GeoSim outperforms several popular semantic similarity approaches.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

跨异构地理空间数据源的语义相似性问题一直备受关注。跨数据源的语义相似性通常涉及表之间属性及其实例的1:1匹配。使用聚类方法,三个不同的挑战仍然没有解决。首先,许多聚类算法只依赖于一个实例属性。其次,不会生成属性匹配的一致分数。最后,没有考虑数据之间的层次关系。为了解决这些问题,我们介绍了GeoSim,一个用于确定地理空间模式之间语义相似性的工具。GeoSim包括GeoSimG和GeoSimH。GeoSimG根据属性实例的地理和语义属性派生集群。它检查集群中的属性实例,通过基于熵的分布(EBD)计算一致的语义相似性得分。GeoSimH还捕获比较表和属性之间的层次关系。涉及多司法管辖区地理空间数据集的实验结果表明,GeoSim优于几种流行的语义相似度方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-Based Geospatial Schema Matching Using Semi-supervised Geosemantic Clustering and Hierarchy
The problem of semantic similarity across heterogeneous geospatial data sources continues to attract interest. Semantic similarity across data sources typically involves 1:1 matching of attributes and their instances between tables. Using clustering methods, three distinct challenges remain unaddressed. First, many clustering algorithms rely only on one instance property. Second, a consistent score for an attribute match is not produced. Finally, hierarchical relationships between the data are not considered. To address these, we introduce GeoSim, a tool for determining the semantic similarity between geospatial schemas. GeoSim consists of GeoSimG and GeoSimH. GeoSimG derives clusters from attribute instances based on their geographic and semantic properties. It examines attribute instances in the clusters to calculate a consistent semantic similarity score through entropy-based distribution (EBD). GeoSimH also captures hierarchical relationships between compared tables and attributes. Results from experiments involving multi-jurisdictional geospatial datasets show that GeoSim outperforms several popular semantic similarity approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信