{"title":"核心蚕食架构:在存在硬故障的情况下,提高多核处理器的寿命芯片性能","authors":"Bogdan F. Romanescu, Daniel J. Sorin","doi":"10.1145/1454115.1454124","DOIUrl":null,"url":null,"abstract":"To improve the lifetime performance of a multicore chip with simple cores, we propose the Core Cannibalization Architecture (CCA). A chip with CCA provisions a fraction of the cores as cannibalizable cores (CCs). In the absence of hard faults, the CCs function just like normal cores. In the presence of hard faults, the CCs can be cannibalized for spare parts at the granularity of pipeline stages. We have designed and laid out CCA chips composed of multiple OpenRISC 1200 cores. Our results show that CCA improves the chips' lifetime performances, compared to chips without CCA.","PeriodicalId":186773,"journal":{"name":"2008 International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Core Cannibalization Architecture: Improving lifetime chip performance for multicore processors in the presence of hard faults\",\"authors\":\"Bogdan F. Romanescu, Daniel J. Sorin\",\"doi\":\"10.1145/1454115.1454124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the lifetime performance of a multicore chip with simple cores, we propose the Core Cannibalization Architecture (CCA). A chip with CCA provisions a fraction of the cores as cannibalizable cores (CCs). In the absence of hard faults, the CCs function just like normal cores. In the presence of hard faults, the CCs can be cannibalized for spare parts at the granularity of pipeline stages. We have designed and laid out CCA chips composed of multiple OpenRISC 1200 cores. Our results show that CCA improves the chips' lifetime performances, compared to chips without CCA.\",\"PeriodicalId\":186773,\"journal\":{\"name\":\"2008 International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1454115.1454124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1454115.1454124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Core Cannibalization Architecture: Improving lifetime chip performance for multicore processors in the presence of hard faults
To improve the lifetime performance of a multicore chip with simple cores, we propose the Core Cannibalization Architecture (CCA). A chip with CCA provisions a fraction of the cores as cannibalizable cores (CCs). In the absence of hard faults, the CCs function just like normal cores. In the presence of hard faults, the CCs can be cannibalized for spare parts at the granularity of pipeline stages. We have designed and laid out CCA chips composed of multiple OpenRISC 1200 cores. Our results show that CCA improves the chips' lifetime performances, compared to chips without CCA.