{"title":"具有多个非线性源的块结构模型的识别","authors":"A. V. Mulders, L. Vanbeylen, K. Usevich","doi":"10.1109/ECC.2014.6862455","DOIUrl":null,"url":null,"abstract":"This paper focuses on a state-space based approach for the identification of a rather general nonlinear block-structured model. The model has several Single-Input Single-Output (SISO) static polynomial nonlinearities connected to a Multiple-Input Multiple-Output (MIMO) dynamic part. The presented method is an extension and improvement of prior work, where at most two nonlinearities could be identified. The location of the nonlinearities or their relation to other parts of the model does not have to be known beforehand: the method is a black-box approach, in which no states, internal signals or structural properties need to be measured or known. The first step is to estimate a partly structured polynomial (nonlinear) state-space model from input-output measurements. Secondly, an algebraic approach is used to split the dynamics and the nonlinearities by decomposing the multivariate polynomial coefficients.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Identification of a block-structured model with several sources of nonlinearity\",\"authors\":\"A. V. Mulders, L. Vanbeylen, K. Usevich\",\"doi\":\"10.1109/ECC.2014.6862455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on a state-space based approach for the identification of a rather general nonlinear block-structured model. The model has several Single-Input Single-Output (SISO) static polynomial nonlinearities connected to a Multiple-Input Multiple-Output (MIMO) dynamic part. The presented method is an extension and improvement of prior work, where at most two nonlinearities could be identified. The location of the nonlinearities or their relation to other parts of the model does not have to be known beforehand: the method is a black-box approach, in which no states, internal signals or structural properties need to be measured or known. The first step is to estimate a partly structured polynomial (nonlinear) state-space model from input-output measurements. Secondly, an algebraic approach is used to split the dynamics and the nonlinearities by decomposing the multivariate polynomial coefficients.\",\"PeriodicalId\":251538,\"journal\":{\"name\":\"2014 European Control Conference (ECC)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECC.2014.6862455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of a block-structured model with several sources of nonlinearity
This paper focuses on a state-space based approach for the identification of a rather general nonlinear block-structured model. The model has several Single-Input Single-Output (SISO) static polynomial nonlinearities connected to a Multiple-Input Multiple-Output (MIMO) dynamic part. The presented method is an extension and improvement of prior work, where at most two nonlinearities could be identified. The location of the nonlinearities or their relation to other parts of the model does not have to be known beforehand: the method is a black-box approach, in which no states, internal signals or structural properties need to be measured or known. The first step is to estimate a partly structured polynomial (nonlinear) state-space model from input-output measurements. Secondly, an algebraic approach is used to split the dynamics and the nonlinearities by decomposing the multivariate polynomial coefficients.