舰船目标识别的神经网络方法

M. Inggs, A. Robinson
{"title":"舰船目标识别的神经网络方法","authors":"M. Inggs, A. Robinson","doi":"10.1109/RADAR.1995.522577","DOIUrl":null,"url":null,"abstract":"This paper summarizes current research into the applications of neural networks for radar ship target recognition. Three very different neural architectures are investigated and compared, namely; the feedforward network with backpropagation, Kohonen's (1990) supervised learning vector quantization network, and Simpson's (see IEEE Trans on Neural Networks, vol.3, no.5, p.776-787, 1992) fuzzy min-max neural network. In all cases, preprocessing in the form of the Fourier-modified discrete Mellin transform is used as a means of extracting feature vectors which are insensitive to the aspect angle of the radar. Classification tests are based on both simulated and real data. Classification accuracies of up to 93% are reported.","PeriodicalId":326587,"journal":{"name":"Proceedings International Radar Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Neural approaches to ship target recognition\",\"authors\":\"M. Inggs, A. Robinson\",\"doi\":\"10.1109/RADAR.1995.522577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarizes current research into the applications of neural networks for radar ship target recognition. Three very different neural architectures are investigated and compared, namely; the feedforward network with backpropagation, Kohonen's (1990) supervised learning vector quantization network, and Simpson's (see IEEE Trans on Neural Networks, vol.3, no.5, p.776-787, 1992) fuzzy min-max neural network. In all cases, preprocessing in the form of the Fourier-modified discrete Mellin transform is used as a means of extracting feature vectors which are insensitive to the aspect angle of the radar. Classification tests are based on both simulated and real data. Classification accuracies of up to 93% are reported.\",\"PeriodicalId\":326587,\"journal\":{\"name\":\"Proceedings International Radar Conference\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.1995.522577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.1995.522577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文综述了神经网络在雷达舰船目标识别中的应用研究现状。研究和比较了三种非常不同的神经结构,即;具有反向传播的前馈网络,Kohonen(1990)的监督学习矢量量化网络,以及Simpson的(见IEEE Trans on Neural Networks, vol.3, no. 5)。(5)模糊最小-最大神经网络。在所有情况下,以傅里叶修正离散Mellin变换的形式进行预处理,作为提取对雷达向角不敏感的特征向量的手段。分类试验基于模拟数据和真实数据。据报道,分类准确率高达93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural approaches to ship target recognition
This paper summarizes current research into the applications of neural networks for radar ship target recognition. Three very different neural architectures are investigated and compared, namely; the feedforward network with backpropagation, Kohonen's (1990) supervised learning vector quantization network, and Simpson's (see IEEE Trans on Neural Networks, vol.3, no.5, p.776-787, 1992) fuzzy min-max neural network. In all cases, preprocessing in the form of the Fourier-modified discrete Mellin transform is used as a means of extracting feature vectors which are insensitive to the aspect angle of the radar. Classification tests are based on both simulated and real data. Classification accuracies of up to 93% are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信