M. Alibakhshikenari, B. Virdee, C. See, R. Abd‐Alhameed, F. Falcone, E. Limiti
{"title":"基于集成电路超材料特性的硅基0.450-0.475 THz串联馈电双介质谐振器片上天线阵列","authors":"M. Alibakhshikenari, B. Virdee, C. See, R. Abd‐Alhameed, F. Falcone, E. Limiti","doi":"10.1109/MetaMaterials.2019.8900949","DOIUrl":null,"url":null,"abstract":"The antenna array designed to operate over 0.450-0.475 Terahertz comprises two dielectric resonators (DRs) that are stacked vertically on top of each other and placed on the surface of the slot antenna fabricated on a silicon substrate using standard CMOS technology. The slot created in the silicon substrate is meandering and is surrounded by metallic via-wall to prevent energy dissipation. The antenna has a maximum gain of 4.5dBi and radiation efficiency of 45.7% at 0.4625 THz. The combination of slot and vias transform the antenna to a metamaterial structure that provides a relatively small antenna footprint. The proposed series-fed double DRs on-chip antenna array is useful for applications in THz integrated circuits.","PeriodicalId":395568,"journal":{"name":"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Silicon-Based 0.450-0.475 THz Series-Fed Double Dielectric Resonator On-Chip Antenna Array Based on Metamaterial Properties for Integrated-Circuits\",\"authors\":\"M. Alibakhshikenari, B. Virdee, C. See, R. Abd‐Alhameed, F. Falcone, E. Limiti\",\"doi\":\"10.1109/MetaMaterials.2019.8900949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The antenna array designed to operate over 0.450-0.475 Terahertz comprises two dielectric resonators (DRs) that are stacked vertically on top of each other and placed on the surface of the slot antenna fabricated on a silicon substrate using standard CMOS technology. The slot created in the silicon substrate is meandering and is surrounded by metallic via-wall to prevent energy dissipation. The antenna has a maximum gain of 4.5dBi and radiation efficiency of 45.7% at 0.4625 THz. The combination of slot and vias transform the antenna to a metamaterial structure that provides a relatively small antenna footprint. The proposed series-fed double DRs on-chip antenna array is useful for applications in THz integrated circuits.\",\"PeriodicalId\":395568,\"journal\":{\"name\":\"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetaMaterials.2019.8900949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetaMaterials.2019.8900949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon-Based 0.450-0.475 THz Series-Fed Double Dielectric Resonator On-Chip Antenna Array Based on Metamaterial Properties for Integrated-Circuits
The antenna array designed to operate over 0.450-0.475 Terahertz comprises two dielectric resonators (DRs) that are stacked vertically on top of each other and placed on the surface of the slot antenna fabricated on a silicon substrate using standard CMOS technology. The slot created in the silicon substrate is meandering and is surrounded by metallic via-wall to prevent energy dissipation. The antenna has a maximum gain of 4.5dBi and radiation efficiency of 45.7% at 0.4625 THz. The combination of slot and vias transform the antenna to a metamaterial structure that provides a relatively small antenna footprint. The proposed series-fed double DRs on-chip antenna array is useful for applications in THz integrated circuits.