光学模数转换器的阵列发生器设计

J. Mait, B. Shoop
{"title":"光学模数转换器的阵列发生器设计","authors":"J. Mait, B. Shoop","doi":"10.1364/domo.1996.jtub.5","DOIUrl":null,"url":null,"abstract":"Within the context of image processing, digital image halftoning is an important class of analog-to-digital (A/D) conversion. Halftoning can be thought of as an image compression technique whereby a continuous-tone, gray-scale image is printed or displayed using only binary-valued pixels. One method to achieve digital halftoning is error diffusion, wherein the error associated with a nonlinear quantization process is diffused within a local region. One of us (BLS) has developed a neural network architecture based on the mathematical foundation of the error diffusion algorithm that is called an error diffusion neural network [1]. The error diffusion neural network computes the halftoned image asymptotically faster than a conventional Hopfield-type neural network, provides full-rank connectivity across the entire image (other error diffusion techniques provide only local error diffusion), and, because of its parallel implementation, does not generate any artifacts commonly associated with sequential halftoning. Figure 1 is a representation of a smart-pixel-based architecture for an optical implementation of the error diffusion algorithm. The functionality required of the error diffusion neural network is implemented using gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) multiple quantum well modulators. The two-dimensional spatial distribution and intensity weighting required of the error diffusion filter is accomplished using a diffractive array generator. We report here on the design of the array generator.","PeriodicalId":301804,"journal":{"name":"Diffractive Optics and Micro-Optics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Array Generator Design for an Optical Analog-to-Digital Converter\",\"authors\":\"J. Mait, B. Shoop\",\"doi\":\"10.1364/domo.1996.jtub.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the context of image processing, digital image halftoning is an important class of analog-to-digital (A/D) conversion. Halftoning can be thought of as an image compression technique whereby a continuous-tone, gray-scale image is printed or displayed using only binary-valued pixels. One method to achieve digital halftoning is error diffusion, wherein the error associated with a nonlinear quantization process is diffused within a local region. One of us (BLS) has developed a neural network architecture based on the mathematical foundation of the error diffusion algorithm that is called an error diffusion neural network [1]. The error diffusion neural network computes the halftoned image asymptotically faster than a conventional Hopfield-type neural network, provides full-rank connectivity across the entire image (other error diffusion techniques provide only local error diffusion), and, because of its parallel implementation, does not generate any artifacts commonly associated with sequential halftoning. Figure 1 is a representation of a smart-pixel-based architecture for an optical implementation of the error diffusion algorithm. The functionality required of the error diffusion neural network is implemented using gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) multiple quantum well modulators. The two-dimensional spatial distribution and intensity weighting required of the error diffusion filter is accomplished using a diffractive array generator. We report here on the design of the array generator.\",\"PeriodicalId\":301804,\"journal\":{\"name\":\"Diffractive Optics and Micro-Optics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffractive Optics and Micro-Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/domo.1996.jtub.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffractive Optics and Micro-Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/domo.1996.jtub.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在图像处理的背景下,数字图像半调是一类重要的模拟到数字(A/D)转换。半色调可以被认为是一种图像压缩技术,其中连续色调,灰度图像仅使用二值像素打印或显示。实现数字半调的一种方法是误差扩散,其中与非线性量化过程相关的误差在局部区域内扩散。我们中的一个人(BLS)基于误差扩散算法的数学基础开发了一种神经网络架构,称为误差扩散神经网络[1]。误差扩散神经网络比传统的hopfield型神经网络渐进地更快地计算半色调图像,提供跨整个图像的全秩连接(其他误差扩散技术只提供局部误差扩散),并且由于其并行实现,不会生成通常与顺序半色调相关的任何工件。图1表示了误差扩散算法的光学实现的基于智能像素的架构。采用砷化镓(GaAs)和砷化镓铝(AlGaAs)多量子阱调制器实现了误差扩散神经网络所需的功能。利用衍射阵列发生器实现了误差扩散滤波器所需的二维空间分布和强度加权。我们在此报告阵列发生器的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Array Generator Design for an Optical Analog-to-Digital Converter
Within the context of image processing, digital image halftoning is an important class of analog-to-digital (A/D) conversion. Halftoning can be thought of as an image compression technique whereby a continuous-tone, gray-scale image is printed or displayed using only binary-valued pixels. One method to achieve digital halftoning is error diffusion, wherein the error associated with a nonlinear quantization process is diffused within a local region. One of us (BLS) has developed a neural network architecture based on the mathematical foundation of the error diffusion algorithm that is called an error diffusion neural network [1]. The error diffusion neural network computes the halftoned image asymptotically faster than a conventional Hopfield-type neural network, provides full-rank connectivity across the entire image (other error diffusion techniques provide only local error diffusion), and, because of its parallel implementation, does not generate any artifacts commonly associated with sequential halftoning. Figure 1 is a representation of a smart-pixel-based architecture for an optical implementation of the error diffusion algorithm. The functionality required of the error diffusion neural network is implemented using gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) multiple quantum well modulators. The two-dimensional spatial distribution and intensity weighting required of the error diffusion filter is accomplished using a diffractive array generator. We report here on the design of the array generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信