E. Emad, O. Alaa, M. Hossam, Mohamed Ashraf, Mohamed A. Shamseldin
{"title":"基于单片机的低成本工业三角机器人的设计与实现","authors":"E. Emad, O. Alaa, M. Hossam, Mohamed Ashraf, Mohamed A. Shamseldin","doi":"10.37394/23205.2021.20.32","DOIUrl":null,"url":null,"abstract":"This paper presents a practical design and control for a delta robot based on a low-cost microcontroller. The main purpose of the proposed delta robot is to improve and enhance industrial productivity such as fast pick-and-place tasks and fully autonomous production lines. Additionally, during a global pandemic similar to (COVID-19), some medical and food products suffer from a sudden increase and demand. Moreover, kinematics, workspace dynamics analysis took into consideration an optimized approach to achieve a viable yet efficient model representing them. Furthermore, stress analysis and material selection have been applied, targeting to achieve high customizability of the manipulator linages. Taking availability into considerations, most components are available locally for ease of manufacturing. To add a touch of machine vision to the robot, a camera module is mounted in an optimized fashion to optimize the robot's performance and increase its accuracy. Finally, various interchangeable end effectors can be mounted including a magnetic gripper, vacuum suction cup, soft-robotics grippers, and other types to suit our requirements and needs.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design and Implementation of a Low-Cost Microcontroller-Based an Industrial Delta Robot\",\"authors\":\"E. Emad, O. Alaa, M. Hossam, Mohamed Ashraf, Mohamed A. Shamseldin\",\"doi\":\"10.37394/23205.2021.20.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a practical design and control for a delta robot based on a low-cost microcontroller. The main purpose of the proposed delta robot is to improve and enhance industrial productivity such as fast pick-and-place tasks and fully autonomous production lines. Additionally, during a global pandemic similar to (COVID-19), some medical and food products suffer from a sudden increase and demand. Moreover, kinematics, workspace dynamics analysis took into consideration an optimized approach to achieve a viable yet efficient model representing them. Furthermore, stress analysis and material selection have been applied, targeting to achieve high customizability of the manipulator linages. Taking availability into considerations, most components are available locally for ease of manufacturing. To add a touch of machine vision to the robot, a camera module is mounted in an optimized fashion to optimize the robot's performance and increase its accuracy. Finally, various interchangeable end effectors can be mounted including a magnetic gripper, vacuum suction cup, soft-robotics grippers, and other types to suit our requirements and needs.\",\"PeriodicalId\":332148,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23205.2021.20.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2021.20.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Implementation of a Low-Cost Microcontroller-Based an Industrial Delta Robot
This paper presents a practical design and control for a delta robot based on a low-cost microcontroller. The main purpose of the proposed delta robot is to improve and enhance industrial productivity such as fast pick-and-place tasks and fully autonomous production lines. Additionally, during a global pandemic similar to (COVID-19), some medical and food products suffer from a sudden increase and demand. Moreover, kinematics, workspace dynamics analysis took into consideration an optimized approach to achieve a viable yet efficient model representing them. Furthermore, stress analysis and material selection have been applied, targeting to achieve high customizability of the manipulator linages. Taking availability into considerations, most components are available locally for ease of manufacturing. To add a touch of machine vision to the robot, a camera module is mounted in an optimized fashion to optimize the robot's performance and increase its accuracy. Finally, various interchangeable end effectors can be mounted including a magnetic gripper, vacuum suction cup, soft-robotics grippers, and other types to suit our requirements and needs.