Kibble-Zurek机制在数字量子计算机上的实验验证

Santiago Higuera-Quintero, F. Rodr'iguez, L. Quiroga, Fernando J. G'omez-Ruiz
{"title":"Kibble-Zurek机制在数字量子计算机上的实验验证","authors":"Santiago Higuera-Quintero, F. Rodr'iguez, L. Quiroga, Fernando J. G'omez-Ruiz","doi":"10.3389/frqst.2022.1026025","DOIUrl":null,"url":null,"abstract":"The Kibble-Zurek mechanism (KZM) captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking. KZM predicts a universal scaling power law for the defect density which is fully determined by the system’s critical exponents at equilibrium and the quenching rate. We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution, on an open access IBM quantum computer (IBM-Q). We find that for this simple one-qubit model, experimental data validates the central KZM assumption of the adiabatic-impulse approximation for a well isolated qubit. Furthermore, we report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies, separately elucidating the role of crosstalk between qubits and the increasing decoherence effects associated with the quantum circuit depth on the KZM predictions. Our results strongly suggest that increasing circuit depth acts as a decoherence source, producing a rapid deviation of experimental data from theoretical unitary predictions.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental validation of the Kibble-Zurek mechanism on a digital quantum computer\",\"authors\":\"Santiago Higuera-Quintero, F. Rodr'iguez, L. Quiroga, Fernando J. G'omez-Ruiz\",\"doi\":\"10.3389/frqst.2022.1026025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kibble-Zurek mechanism (KZM) captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking. KZM predicts a universal scaling power law for the defect density which is fully determined by the system’s critical exponents at equilibrium and the quenching rate. We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution, on an open access IBM quantum computer (IBM-Q). We find that for this simple one-qubit model, experimental data validates the central KZM assumption of the adiabatic-impulse approximation for a well isolated qubit. Furthermore, we report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies, separately elucidating the role of crosstalk between qubits and the increasing decoherence effects associated with the quantum circuit depth on the KZM predictions. Our results strongly suggest that increasing circuit depth acts as a decoherence source, producing a rapid deviation of experimental data from theoretical unitary predictions.\",\"PeriodicalId\":108649,\"journal\":{\"name\":\"Frontiers in Quantum Science and Technology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Quantum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frqst.2022.1026025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frqst.2022.1026025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Kibble-Zurek机制(KZM)捕获了具有对称破缺的非平衡量子相变的基本物理。KZM预测了缺陷密度的普遍标度幂律,它完全由系统的平衡态临界指数和淬火速率决定。我们在一台开放存取的IBM量子计算机(IBM- q)上对KZM进行了最简单的量子情况(朗道-齐纳演化下的单个量子比特)的实验测试。我们发现,对于这个简单的单量子位模型,实验数据验证了中心KZM假设的绝热脉冲近似对于一个良好隔离的量子位。此外,我们报告了在不同电路环境和拓扑中嵌入单个量子比特的广泛IBM-Q实验,分别阐明了量子比特之间的串扰和与量子电路深度相关的退相干效应对KZM预测的作用。我们的研究结果强烈表明,增加电路深度作为退相干源,导致实验数据与理论一元预测的快速偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental validation of the Kibble-Zurek mechanism on a digital quantum computer
The Kibble-Zurek mechanism (KZM) captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking. KZM predicts a universal scaling power law for the defect density which is fully determined by the system’s critical exponents at equilibrium and the quenching rate. We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution, on an open access IBM quantum computer (IBM-Q). We find that for this simple one-qubit model, experimental data validates the central KZM assumption of the adiabatic-impulse approximation for a well isolated qubit. Furthermore, we report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies, separately elucidating the role of crosstalk between qubits and the increasing decoherence effects associated with the quantum circuit depth on the KZM predictions. Our results strongly suggest that increasing circuit depth acts as a decoherence source, producing a rapid deviation of experimental data from theoretical unitary predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信