{"title":"广义自回归评分模型在R: GAS包","authors":"David Ardia, Kris Boudt, Leopoldo Catania","doi":"10.18637/jss.v088.i06","DOIUrl":null,"url":null,"abstract":"This paper presents the R package GAS for the analysis of time series under the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas (2013) and Harvey (2013). The distinctive feature of the GAS approach is the use of the score function as the driver of time-variation in the parameters of non-linear models. The GAS package provides functions to simulate univariate and multivariate GAS processes, to estimate the GAS parameters and to make time series forecasts. We illustrate the use of the GAS package with a detailed case study on estimating the time-varying conditional densities of financial asset returns.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Generalized Autoregressive Score Models in R: The GAS Package\",\"authors\":\"David Ardia, Kris Boudt, Leopoldo Catania\",\"doi\":\"10.18637/jss.v088.i06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the R package GAS for the analysis of time series under the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas (2013) and Harvey (2013). The distinctive feature of the GAS approach is the use of the score function as the driver of time-variation in the parameters of non-linear models. The GAS package provides functions to simulate univariate and multivariate GAS processes, to estimate the GAS parameters and to make time series forecasts. We illustrate the use of the GAS package with a detailed case study on estimating the time-varying conditional densities of financial asset returns.\",\"PeriodicalId\":170198,\"journal\":{\"name\":\"ERN: Forecasting Techniques (Topic)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Forecasting Techniques (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v088.i06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v088.i06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
摘要
本文在Creal, Koopman, and Lucas(2013)和Harvey(2013)的广义自回归评分(GAS)框架下,提出了R包GAS用于时间序列分析。GAS方法的显著特征是使用分数函数作为非线性模型参数的时间变化的驱动因素。GAS包提供了模拟单变量和多变量GAS过程、估计GAS参数和进行时间序列预测的功能。我们通过一个详细的案例研究来说明GAS包的使用,该案例研究估计了金融资产回报的时变条件密度。
Generalized Autoregressive Score Models in R: The GAS Package
This paper presents the R package GAS for the analysis of time series under the generalized autoregressive score (GAS) framework of Creal, Koopman, and Lucas (2013) and Harvey (2013). The distinctive feature of the GAS approach is the use of the score function as the driver of time-variation in the parameters of non-linear models. The GAS package provides functions to simulate univariate and multivariate GAS processes, to estimate the GAS parameters and to make time series forecasts. We illustrate the use of the GAS package with a detailed case study on estimating the time-varying conditional densities of financial asset returns.