可穿戴眼动追踪系统的鲁棒目标识别

Mustafa Shdaifat, S. S. Bukhari, Takumi Toyama, A. Dengel
{"title":"可穿戴眼动追踪系统的鲁棒目标识别","authors":"Mustafa Shdaifat, S. S. Bukhari, Takumi Toyama, A. Dengel","doi":"10.1109/ACPR.2015.7486583","DOIUrl":null,"url":null,"abstract":"Object recognition is a versatile capability. Automatic guided tours and augmented reality are just two examples. Humans seem to do it subconsciously - unaware of the extensive processing required for it - while it is a complex task for machines. Methods based on SIFT features have proven to be robust for recognition. However, a prior detection step is required to limit confusion, caused by, e.g., scene clutter. We present an attention-guided method that offloads this to humans through eye tracking. Gaze data is used to extract candidate patches to recognize afterwards. It improves upon previous work by automatically selecting the dynamic size of said patch, instead of fixed large local region. Therefore increasing robustness and independence compared to fixed window size technique.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"32 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust object recognition in wearable eye tracking system\",\"authors\":\"Mustafa Shdaifat, S. S. Bukhari, Takumi Toyama, A. Dengel\",\"doi\":\"10.1109/ACPR.2015.7486583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object recognition is a versatile capability. Automatic guided tours and augmented reality are just two examples. Humans seem to do it subconsciously - unaware of the extensive processing required for it - while it is a complex task for machines. Methods based on SIFT features have proven to be robust for recognition. However, a prior detection step is required to limit confusion, caused by, e.g., scene clutter. We present an attention-guided method that offloads this to humans through eye tracking. Gaze data is used to extract candidate patches to recognize afterwards. It improves upon previous work by automatically selecting the dynamic size of said patch, instead of fixed large local region. Therefore increasing robustness and independence compared to fixed window size technique.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"32 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对象识别是一种通用的能力。自动导游和增强现实只是两个例子。人类似乎是在潜意识中做这件事的——没有意识到它需要大量的处理——而这对机器来说是一项复杂的任务。基于SIFT特征的方法已被证明具有较好的识别鲁棒性。然而,需要预先的检测步骤来限制混乱,例如由场景杂波引起的混乱。我们提出了一种注意力引导的方法,通过眼球追踪将这种情况转移给人类。利用注视数据提取候选斑块进行后续识别。它改进了以前的工作,自动选择所述补丁的动态大小,而不是固定的大局部区域。因此,与固定窗口大小技术相比,增加了鲁棒性和独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust object recognition in wearable eye tracking system
Object recognition is a versatile capability. Automatic guided tours and augmented reality are just two examples. Humans seem to do it subconsciously - unaware of the extensive processing required for it - while it is a complex task for machines. Methods based on SIFT features have proven to be robust for recognition. However, a prior detection step is required to limit confusion, caused by, e.g., scene clutter. We present an attention-guided method that offloads this to humans through eye tracking. Gaze data is used to extract candidate patches to recognize afterwards. It improves upon previous work by automatically selecting the dynamic size of said patch, instead of fixed large local region. Therefore increasing robustness and independence compared to fixed window size technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信