铁路运输数据集侧信息的显著性检测

Qiuning Li, Yidong Li, Congyan Lang
{"title":"铁路运输数据集侧信息的显著性检测","authors":"Qiuning Li, Yidong Li, Congyan Lang","doi":"10.1109/ICIRT.2018.8641630","DOIUrl":null,"url":null,"abstract":"with the development of intelligent railway transportation, accurate location of wayside track assets like traffic signals, mileposts, switches, crossings make essential sense. In this paper, we propose a novel saliency detection model with deep learning and side information aimed at railway transportation dataset. We firstly construct a new railway transportation dataset, which includes 1282 images from the real videos taken by the camera on moving trains and collected from the Internet. Extensive experiments show the effectiveness of our model which can accurately locate the salient object in the dataset.","PeriodicalId":202415,"journal":{"name":"2018 International Conference on Intelligent Rail Transportation (ICIRT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Saliency Detection with Side Information on Railway Transportation Dataset\",\"authors\":\"Qiuning Li, Yidong Li, Congyan Lang\",\"doi\":\"10.1109/ICIRT.2018.8641630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"with the development of intelligent railway transportation, accurate location of wayside track assets like traffic signals, mileposts, switches, crossings make essential sense. In this paper, we propose a novel saliency detection model with deep learning and side information aimed at railway transportation dataset. We firstly construct a new railway transportation dataset, which includes 1282 images from the real videos taken by the camera on moving trains and collected from the Internet. Extensive experiments show the effectiveness of our model which can accurately locate the salient object in the dataset.\",\"PeriodicalId\":202415,\"journal\":{\"name\":\"2018 International Conference on Intelligent Rail Transportation (ICIRT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Rail Transportation (ICIRT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIRT.2018.8641630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Rail Transportation (ICIRT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIRT.2018.8641630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着智能轨道交通的发展,对交通信号、里程、道岔、道口等道旁轨道资产的准确定位具有重要意义。本文针对铁路运输数据集,提出了一种基于深度学习和侧信息的显著性检测模型。首先,我们构建了一个新的铁路运输数据集,该数据集包括1282张由摄像机拍摄的真实火车行驶视频和从互联网上收集的图像。大量的实验证明了该模型的有效性,可以准确地定位数据集中的显著目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saliency Detection with Side Information on Railway Transportation Dataset
with the development of intelligent railway transportation, accurate location of wayside track assets like traffic signals, mileposts, switches, crossings make essential sense. In this paper, we propose a novel saliency detection model with deep learning and side information aimed at railway transportation dataset. We firstly construct a new railway transportation dataset, which includes 1282 images from the real videos taken by the camera on moving trains and collected from the Internet. Extensive experiments show the effectiveness of our model which can accurately locate the salient object in the dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信