使用紧凑的、基于逻辑的表示对pomdp进行规划

Chenggang Wang, James G. Schmolze
{"title":"使用紧凑的、基于逻辑的表示对pomdp进行规划","authors":"Chenggang Wang, James G. Schmolze","doi":"10.1109/ICTAI.2005.96","DOIUrl":null,"url":null,"abstract":"Partially observable Markov decision processes (POMDPs) provide a general framework for AI planning, but they lack the structure for representing real world planning problems in a convenient and efficient way. Representations built on logic allow for problems to be specified in a compact and transparent manner. Moreover, decision making algorithms can assume and exploit structure found in the state space, actions, observations, and success criteria, and can solve with relative efficiency problems with large state spaces. In recent years researchers have sought to combine the benefits of logic with the expressiveness of POMDPs. In this paper, we show how to build upon and extend the results in this fusing of logic and decision theory. In particular, we present a compact representation of POMDPs and a method to update beliefs after actions and observations. The key contribution is our compact representation of belief states and of the operations used to update them. We then use heuristic search to find optimal plans that maximize expected total reward given an initial belief state","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Planning with POMDPs using a compact, logic-based representation\",\"authors\":\"Chenggang Wang, James G. Schmolze\",\"doi\":\"10.1109/ICTAI.2005.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partially observable Markov decision processes (POMDPs) provide a general framework for AI planning, but they lack the structure for representing real world planning problems in a convenient and efficient way. Representations built on logic allow for problems to be specified in a compact and transparent manner. Moreover, decision making algorithms can assume and exploit structure found in the state space, actions, observations, and success criteria, and can solve with relative efficiency problems with large state spaces. In recent years researchers have sought to combine the benefits of logic with the expressiveness of POMDPs. In this paper, we show how to build upon and extend the results in this fusing of logic and decision theory. In particular, we present a compact representation of POMDPs and a method to update beliefs after actions and observations. The key contribution is our compact representation of belief states and of the operations used to update them. We then use heuristic search to find optimal plans that maximize expected total reward given an initial belief state\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

部分可观察马尔可夫决策过程(pomdp)为人工智能规划提供了一个通用框架,但它们缺乏以一种方便有效的方式表示现实世界规划问题的结构。基于逻辑的表示允许以紧凑和透明的方式指定问题。此外,决策算法可以假设和利用在状态空间、动作、观察和成功标准中发现的结构,并且可以相对高效地解决大状态空间的问题。近年来,研究人员试图将逻辑的好处与pomdp的表达性结合起来。在本文中,我们展示了如何在逻辑和决策理论的融合中建立和扩展结果。特别地,我们提出了pomdp的紧凑表示和一种在行动和观察后更新信念的方法。关键的贡献是我们对信念状态的紧凑表示和用于更新它们的操作。然后,我们使用启发式搜索找到在给定初始信念状态下期望总回报最大化的最优方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planning with POMDPs using a compact, logic-based representation
Partially observable Markov decision processes (POMDPs) provide a general framework for AI planning, but they lack the structure for representing real world planning problems in a convenient and efficient way. Representations built on logic allow for problems to be specified in a compact and transparent manner. Moreover, decision making algorithms can assume and exploit structure found in the state space, actions, observations, and success criteria, and can solve with relative efficiency problems with large state spaces. In recent years researchers have sought to combine the benefits of logic with the expressiveness of POMDPs. In this paper, we show how to build upon and extend the results in this fusing of logic and decision theory. In particular, we present a compact representation of POMDPs and a method to update beliefs after actions and observations. The key contribution is our compact representation of belief states and of the operations used to update them. We then use heuristic search to find optimal plans that maximize expected total reward given an initial belief state
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信