采用64/spl次/64 CNN芯片进行纹理分割

T. Szirányi
{"title":"采用64/spl次/64 CNN芯片进行纹理分割","authors":"T. Szirányi","doi":"10.1109/CNNA.2002.1035094","DOIUrl":null,"url":null,"abstract":"CNN's fast image processing technology helps us to run high-speed filtering tasks for image enhancement, recognition or segmentation. Texture analysis is a specific task, since the whole image is processed massively parallel while we have a limited number of texture-specific filtering and evaluation steps. Former results of simulations and recognition results of simple CNN chips show that the CNN is an appropriate tool for this image-processing task. Now we see what the gray-scale image processor CNN chip at its limited memory capability and data-handling/-processing accuracy can complete for multi-texture images. We demonstrate and compare some of our earlier CNN-related texture analysis methods. Some methods to improve CNN configuration are proposed.","PeriodicalId":387716,"journal":{"name":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Texture segmentation by the 64/spl times/64 CNN chip\",\"authors\":\"T. Szirányi\",\"doi\":\"10.1109/CNNA.2002.1035094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CNN's fast image processing technology helps us to run high-speed filtering tasks for image enhancement, recognition or segmentation. Texture analysis is a specific task, since the whole image is processed massively parallel while we have a limited number of texture-specific filtering and evaluation steps. Former results of simulations and recognition results of simple CNN chips show that the CNN is an appropriate tool for this image-processing task. Now we see what the gray-scale image processor CNN chip at its limited memory capability and data-handling/-processing accuracy can complete for multi-texture images. We demonstrate and compare some of our earlier CNN-related texture analysis methods. Some methods to improve CNN configuration are proposed.\",\"PeriodicalId\":387716,\"journal\":{\"name\":\"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2002.1035094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2002.1035094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

CNN的快速图像处理技术帮助我们运行高速滤波任务,用于图像增强、识别或分割。纹理分析是一项特殊的任务,因为整个图像是大规模并行处理的,而我们只有有限数量的纹理特定过滤和评估步骤。以往简单CNN芯片的仿真和识别结果表明,CNN是一种合适的图像处理工具。现在我们看到了灰度图像处理器CNN芯片在其有限的内存容量和数据处理精度下可以完成多纹理图像。我们演示并比较了一些早期与cnn相关的纹理分析方法。提出了一些改进CNN组态的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture segmentation by the 64/spl times/64 CNN chip
CNN's fast image processing technology helps us to run high-speed filtering tasks for image enhancement, recognition or segmentation. Texture analysis is a specific task, since the whole image is processed massively parallel while we have a limited number of texture-specific filtering and evaluation steps. Former results of simulations and recognition results of simple CNN chips show that the CNN is an appropriate tool for this image-processing task. Now we see what the gray-scale image processor CNN chip at its limited memory capability and data-handling/-processing accuracy can complete for multi-texture images. We demonstrate and compare some of our earlier CNN-related texture analysis methods. Some methods to improve CNN configuration are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信