利用实值基函数抑制集成分类中的噪声

Yuval Ben-Hur, Asaf Goren, Da El Klang, Yongjune Kim, Yuval Cassuto
{"title":"利用实值基函数抑制集成分类中的噪声","authors":"Yuval Ben-Hur, Asaf Goren, Da El Klang, Yongjune Kim, Yuval Cassuto","doi":"10.1109/ISIT50566.2022.9834480","DOIUrl":null,"url":null,"abstract":"In data-intensive applications, it is advantageous to perform some partial processing close to the data, and communicate to a central processor the partial results instead of the data itself. When the communication medium is noisy, one must mitigate the resulting degradation in computation quality. We study this problem for the setup of binary classification performed by an ensemble of functions communicating real-valued confidence levels. We propose a noise-mitigation solution that works by optimizing the aggregation coefficients at the central processor. Toward that, we formulate a post-training gradient algorithm that minimizes the error probability given the dataset and the noise parameters. We further derive lower and upper bounds on the optimized error probability, and show empirical results that demonstrate the enhanced performance achieved by our scheme on real data.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mitigating Noise in Ensemble Classification with Real-Valued Base Functions\",\"authors\":\"Yuval Ben-Hur, Asaf Goren, Da El Klang, Yongjune Kim, Yuval Cassuto\",\"doi\":\"10.1109/ISIT50566.2022.9834480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In data-intensive applications, it is advantageous to perform some partial processing close to the data, and communicate to a central processor the partial results instead of the data itself. When the communication medium is noisy, one must mitigate the resulting degradation in computation quality. We study this problem for the setup of binary classification performed by an ensemble of functions communicating real-valued confidence levels. We propose a noise-mitigation solution that works by optimizing the aggregation coefficients at the central processor. Toward that, we formulate a post-training gradient algorithm that minimizes the error probability given the dataset and the noise parameters. We further derive lower and upper bounds on the optimized error probability, and show empirical results that demonstrate the enhanced performance achieved by our scheme on real data.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在数据密集型应用程序中,最好在靠近数据的地方执行部分处理,并将部分结果(而不是数据本身)通信给中央处理器。当通信介质有噪声时,必须减轻由此导致的计算质量下降。我们研究了用传递实值置信水平的函数集合来建立二元分类的问题。我们提出了一种通过优化中央处理器的聚合系数来降低噪声的解决方案。为此,我们制定了一个训练后梯度算法,该算法在给定数据集和噪声参数的情况下最小化错误概率。我们进一步推导了优化后的误差概率的下界和上界,并给出了在实际数据上证明我们的方案提高了性能的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating Noise in Ensemble Classification with Real-Valued Base Functions
In data-intensive applications, it is advantageous to perform some partial processing close to the data, and communicate to a central processor the partial results instead of the data itself. When the communication medium is noisy, one must mitigate the resulting degradation in computation quality. We study this problem for the setup of binary classification performed by an ensemble of functions communicating real-valued confidence levels. We propose a noise-mitigation solution that works by optimizing the aggregation coefficients at the central processor. Toward that, we formulate a post-training gradient algorithm that minimizes the error probability given the dataset and the noise parameters. We further derive lower and upper bounds on the optimized error probability, and show empirical results that demonstrate the enhanced performance achieved by our scheme on real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信