{"title":"从物理假设看安全图景","authors":"Alexander Koch","doi":"10.1109/ITW48936.2021.9611501","DOIUrl":null,"url":null,"abstract":"We survey several security assumptions based on physical principles as opposed to more common complexity-theoretic assumptions. This survey focuses on obtaining security guarantees via i) idealized hardware and ii) physical objects, and specifies how these assumptions have been used for devising cryptographic protocols, such as protocols for secure multi-party computation. Note that due to these assumptions, the protocols are often conceptually simpler, the security is independent of the computational power of an attacker, and the functioning and security is more transparent to humans.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"378 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Landscape of Security from Physical Assumptions1\",\"authors\":\"Alexander Koch\",\"doi\":\"10.1109/ITW48936.2021.9611501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey several security assumptions based on physical principles as opposed to more common complexity-theoretic assumptions. This survey focuses on obtaining security guarantees via i) idealized hardware and ii) physical objects, and specifies how these assumptions have been used for devising cryptographic protocols, such as protocols for secure multi-party computation. Note that due to these assumptions, the protocols are often conceptually simpler, the security is independent of the computational power of an attacker, and the functioning and security is more transparent to humans.\",\"PeriodicalId\":325229,\"journal\":{\"name\":\"2021 IEEE Information Theory Workshop (ITW)\",\"volume\":\"378 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW48936.2021.9611501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Landscape of Security from Physical Assumptions1
We survey several security assumptions based on physical principles as opposed to more common complexity-theoretic assumptions. This survey focuses on obtaining security guarantees via i) idealized hardware and ii) physical objects, and specifies how these assumptions have been used for devising cryptographic protocols, such as protocols for secure multi-party computation. Note that due to these assumptions, the protocols are often conceptually simpler, the security is independent of the computational power of an attacker, and the functioning and security is more transparent to humans.