在异构环境中实现高效的多特征查询

Ulrich Güntzer, Wolf-Tilo Balke, Werner Kießling
{"title":"在异构环境中实现高效的多特征查询","authors":"Ulrich Güntzer, Wolf-Tilo Balke, Werner Kießling","doi":"10.1109/ITCC.2001.918866","DOIUrl":null,"url":null,"abstract":"Applications like multimedia databases or enterprise-wide information management systems have to meet the challenge of efficiently retrieving the best-matching objects from vast collections of data. We present a new algorithm, called Stream-Combine, for processing multi-feature queries on heterogeneous data sources. Stream-Combine is self-adapting to different data distributions and to the specific kind of the combining function. Furthermore, we present a new retrieval strategy that essentially speeds up the output of relevant objects.","PeriodicalId":318295,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"Towards efficient multi-feature queries in heterogeneous environments\",\"authors\":\"Ulrich Güntzer, Wolf-Tilo Balke, Werner Kießling\",\"doi\":\"10.1109/ITCC.2001.918866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications like multimedia databases or enterprise-wide information management systems have to meet the challenge of efficiently retrieving the best-matching objects from vast collections of data. We present a new algorithm, called Stream-Combine, for processing multi-feature queries on heterogeneous data sources. Stream-Combine is self-adapting to different data distributions and to the specific kind of the combining function. Furthermore, we present a new retrieval strategy that essentially speeds up the output of relevant objects.\",\"PeriodicalId\":318295,\"journal\":{\"name\":\"Proceedings International Conference on Information Technology: Coding and Computing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Conference on Information Technology: Coding and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITCC.2001.918866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2001.918866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

摘要

像多媒体数据库或企业范围的信息管理系统这样的应用程序必须满足从大量数据集合中高效检索最佳匹配对象的挑战。提出了一种新的流-组合算法,用于处理异构数据源上的多特征查询。流组合是自适应不同的数据分布和特定类型的组合函数。此外,我们提出了一种新的检索策略,从本质上加快了相关对象的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards efficient multi-feature queries in heterogeneous environments
Applications like multimedia databases or enterprise-wide information management systems have to meet the challenge of efficiently retrieving the best-matching objects from vast collections of data. We present a new algorithm, called Stream-Combine, for processing multi-feature queries on heterogeneous data sources. Stream-Combine is self-adapting to different data distributions and to the specific kind of the combining function. Furthermore, we present a new retrieval strategy that essentially speeds up the output of relevant objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信