{"title":"大功率ld抽运板Nd:YAG激光器的热分析","authors":"Masao Sato, S. Naito, N. Iehisa, N. Karube","doi":"10.1117/12.380879","DOIUrl":null,"url":null,"abstract":"We have developed a high power LD pumped Nd:YAG laser using one zig-zag slab crystal, and obtained the average output power of 3.3 kW with the optical efficiency of more than 35% under the cooling condition of 12 degrees Celsius. Our method is to mount the LD stacks on both the sides of the 6 mm X 25 mm X 206 mm slab crystal in which the LD stacks mounted on one side of the slab pump the upper part of it while the ones on the other side pump the lower part. The LD pump light transmitted through the crystal is reflected by Au mirror and is introduced back into the slab. These LD stacks are arranged so that the thermally induced birefringence can be eliminated by maintaining uniform pumping in the width direction of the slab (non-zig-zag direction). The pumping distribution in the width direction was made constant by ray tracing simulation. The small signal gain distribution was measured constant in this direction, which indicates that the pumping distribution in the width direction has become uniform. The total heat generated in the slab was calculated to be less than 2.3 kW and the temperature distribution and thermal stress distribution were also simulated. According to this calculation, the maximum thermal stress of 40 MPa occurs in the surface of the slab, which is one-fourth of the fracture limit of YAG crystal.","PeriodicalId":375593,"journal":{"name":"Advanced High-Power Lasers and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Thermal analysis of high-power LD-pumped slab Nd:YAG laser\",\"authors\":\"Masao Sato, S. Naito, N. Iehisa, N. Karube\",\"doi\":\"10.1117/12.380879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a high power LD pumped Nd:YAG laser using one zig-zag slab crystal, and obtained the average output power of 3.3 kW with the optical efficiency of more than 35% under the cooling condition of 12 degrees Celsius. Our method is to mount the LD stacks on both the sides of the 6 mm X 25 mm X 206 mm slab crystal in which the LD stacks mounted on one side of the slab pump the upper part of it while the ones on the other side pump the lower part. The LD pump light transmitted through the crystal is reflected by Au mirror and is introduced back into the slab. These LD stacks are arranged so that the thermally induced birefringence can be eliminated by maintaining uniform pumping in the width direction of the slab (non-zig-zag direction). The pumping distribution in the width direction was made constant by ray tracing simulation. The small signal gain distribution was measured constant in this direction, which indicates that the pumping distribution in the width direction has become uniform. The total heat generated in the slab was calculated to be less than 2.3 kW and the temperature distribution and thermal stress distribution were also simulated. According to this calculation, the maximum thermal stress of 40 MPa occurs in the surface of the slab, which is one-fourth of the fracture limit of YAG crystal.\",\"PeriodicalId\":375593,\"journal\":{\"name\":\"Advanced High-Power Lasers and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced High-Power Lasers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.380879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced High-Power Lasers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.380879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
在12℃的冷却条件下,我们开发了一种高功率LD泵浦Nd:YAG激光器,平均输出功率为3.3 kW,光学效率超过35%。我们的方法是将LD堆安装在6 mm X 25 mm X 206 mm平板晶体的两侧,其中LD堆安装在平板泵的一侧为其上部,而另一侧的LD堆则安装在其下部。通过晶体传输的LD泵浦光被金反射镜反射并重新引入平板。这些LD堆叠的布置使得热诱导双折射可以通过在板的宽度方向(非锯齿方向)保持均匀的泵送来消除。通过光线追踪模拟,使泵浦在宽度方向上的分布保持恒定。小信号增益分布在该方向恒定,表明宽度方向的抽运分布趋于均匀。计算得到板内总发热量小于2.3 kW,并对板内温度分布和热应力分布进行了模拟。根据计算,板坯表面最大热应力为40 MPa,为YAG晶体断裂极限的四分之一。
Thermal analysis of high-power LD-pumped slab Nd:YAG laser
We have developed a high power LD pumped Nd:YAG laser using one zig-zag slab crystal, and obtained the average output power of 3.3 kW with the optical efficiency of more than 35% under the cooling condition of 12 degrees Celsius. Our method is to mount the LD stacks on both the sides of the 6 mm X 25 mm X 206 mm slab crystal in which the LD stacks mounted on one side of the slab pump the upper part of it while the ones on the other side pump the lower part. The LD pump light transmitted through the crystal is reflected by Au mirror and is introduced back into the slab. These LD stacks are arranged so that the thermally induced birefringence can be eliminated by maintaining uniform pumping in the width direction of the slab (non-zig-zag direction). The pumping distribution in the width direction was made constant by ray tracing simulation. The small signal gain distribution was measured constant in this direction, which indicates that the pumping distribution in the width direction has become uniform. The total heat generated in the slab was calculated to be less than 2.3 kW and the temperature distribution and thermal stress distribution were also simulated. According to this calculation, the maximum thermal stress of 40 MPa occurs in the surface of the slab, which is one-fourth of the fracture limit of YAG crystal.