基于进化计算的神经网络结构的自动生成

E. Vonk, L. Jain, L. Veelenturf, R. P. Johnson
{"title":"基于进化计算的神经网络结构的自动生成","authors":"E. Vonk, L. Jain, L. Veelenturf, R. P. Johnson","doi":"10.1109/ETD.1995.403479","DOIUrl":null,"url":null,"abstract":"This paper reports the application of evolutionary computation in the automatic generation of a neural network architecture. It is a usual practice to use trial and error to find a suitable neural network architecture. This is not only time consuming but may not generate an optimal solution for a given problem. The use of evolutionary computation is a step towards automation in architecture generation. In this paper a brief introduction to the field is given as well as an implementation of automatic neural network generation using genetic programming.<<ETX>>","PeriodicalId":302763,"journal":{"name":"Proceedings Electronic Technology Directions to the Year 2000","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Automatic generation of a neural network architecture using evolutionary computation\",\"authors\":\"E. Vonk, L. Jain, L. Veelenturf, R. P. Johnson\",\"doi\":\"10.1109/ETD.1995.403479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the application of evolutionary computation in the automatic generation of a neural network architecture. It is a usual practice to use trial and error to find a suitable neural network architecture. This is not only time consuming but may not generate an optimal solution for a given problem. The use of evolutionary computation is a step towards automation in architecture generation. In this paper a brief introduction to the field is given as well as an implementation of automatic neural network generation using genetic programming.<<ETX>>\",\"PeriodicalId\":302763,\"journal\":{\"name\":\"Proceedings Electronic Technology Directions to the Year 2000\",\"volume\":\"2011 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Electronic Technology Directions to the Year 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETD.1995.403479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Electronic Technology Directions to the Year 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETD.1995.403479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

本文报道了进化计算在神经网络结构自动生成中的应用。通常的做法是使用试错法来找到合适的神经网络架构。这不仅耗时,而且可能无法为给定问题生成最佳解决方案。进化计算的使用是迈向架构生成自动化的一步。本文简要介绍了这一领域,并给出了一种利用遗传规划实现神经网络自动生成的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic generation of a neural network architecture using evolutionary computation
This paper reports the application of evolutionary computation in the automatic generation of a neural network architecture. It is a usual practice to use trial and error to find a suitable neural network architecture. This is not only time consuming but may not generate an optimal solution for a given problem. The use of evolutionary computation is a step towards automation in architecture generation. In this paper a brief introduction to the field is given as well as an implementation of automatic neural network generation using genetic programming.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信