欧洲区域价格市场的随机需求侧管理

S. Talari, D. Mende, David Sebastian Stock, M. Shafie‐khah, J. Catalão
{"title":"欧洲区域价格市场的随机需求侧管理","authors":"S. Talari, D. Mende, David Sebastian Stock, M. Shafie‐khah, J. Catalão","doi":"10.1109/SEST.2019.8849050","DOIUrl":null,"url":null,"abstract":"In this paper, demand-side management (DSM) is performed through demand response aggregators (DRAs) in an uncertain environment within zonal price market framework. The proposed scheme aims to allow cross-border electricity trading and optimize interconnections usage as well as to obtain optimum DR volume from the perspective of the Market Coupling Operator (MCO). The market consists of several zonal price markets as Nominated Electricity Market Operators (NEMO) who run their day-ahead and balancing market internally and communicate the information to the MCO to provide the cooperation with other NEMOs. To this end, a stochastic two-stage model is formulated in which the total operation cost from MCO's viewpoint is minimized. Accordingly, the model aims to consider day-ahead decisions in the first stage and balancing decisions in the second stage. Furthermore, the intermittent nature of renewable sources generation is handled by scenario generation with Monte-Carlo Simulation (MCS) method. NEMOs are physically connected as radial network. Therefore, all relative network constraints are taken into account as a linear power flow for radial networks. The results of the implementation of the proposed model demonstrate the effectiveness of various DR biddings on hourly DR volume, hourly DR cost and power exchange between different NEMOS.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic Demand Side Management in European Zonal Price Market\",\"authors\":\"S. Talari, D. Mende, David Sebastian Stock, M. Shafie‐khah, J. Catalão\",\"doi\":\"10.1109/SEST.2019.8849050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, demand-side management (DSM) is performed through demand response aggregators (DRAs) in an uncertain environment within zonal price market framework. The proposed scheme aims to allow cross-border electricity trading and optimize interconnections usage as well as to obtain optimum DR volume from the perspective of the Market Coupling Operator (MCO). The market consists of several zonal price markets as Nominated Electricity Market Operators (NEMO) who run their day-ahead and balancing market internally and communicate the information to the MCO to provide the cooperation with other NEMOs. To this end, a stochastic two-stage model is formulated in which the total operation cost from MCO's viewpoint is minimized. Accordingly, the model aims to consider day-ahead decisions in the first stage and balancing decisions in the second stage. Furthermore, the intermittent nature of renewable sources generation is handled by scenario generation with Monte-Carlo Simulation (MCS) method. NEMOs are physically connected as radial network. Therefore, all relative network constraints are taken into account as a linear power flow for radial networks. The results of the implementation of the proposed model demonstrate the effectiveness of various DR biddings on hourly DR volume, hourly DR cost and power exchange between different NEMOS.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,需求侧管理(DSM)是通过需求响应聚合器(dra)在区域价格市场框架下的不确定环境中进行的。该方案旨在允许跨境电力交易,优化互连使用,并从市场耦合运营商(MCO)的角度获得最佳DR量。该市场由几个区域价格市场组成,作为指定电力市场运营商(NEMO),他们在内部运行其前一天和平衡市场,并将信息传达给MCO以提供与其他NEMO的合作。为此,从MCO的角度出发,建立了一个总运行成本最小的随机两阶段模型。因此,该模型的目标是在第一阶段考虑日前决策,在第二阶段考虑平衡决策。此外,采用蒙特卡罗模拟(MCS)方法对可再生能源发电的间歇性进行了场景生成处理。nemo在物理上以放射状网络连接。因此,所有的相对网络约束都被考虑为径向网络的线性潮流。该模型的实施结果表明,不同的DR投标方式对每小时DR体积、每小时DR成本和不同NEMOS之间的功率交换都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Demand Side Management in European Zonal Price Market
In this paper, demand-side management (DSM) is performed through demand response aggregators (DRAs) in an uncertain environment within zonal price market framework. The proposed scheme aims to allow cross-border electricity trading and optimize interconnections usage as well as to obtain optimum DR volume from the perspective of the Market Coupling Operator (MCO). The market consists of several zonal price markets as Nominated Electricity Market Operators (NEMO) who run their day-ahead and balancing market internally and communicate the information to the MCO to provide the cooperation with other NEMOs. To this end, a stochastic two-stage model is formulated in which the total operation cost from MCO's viewpoint is minimized. Accordingly, the model aims to consider day-ahead decisions in the first stage and balancing decisions in the second stage. Furthermore, the intermittent nature of renewable sources generation is handled by scenario generation with Monte-Carlo Simulation (MCS) method. NEMOs are physically connected as radial network. Therefore, all relative network constraints are taken into account as a linear power flow for radial networks. The results of the implementation of the proposed model demonstrate the effectiveness of various DR biddings on hourly DR volume, hourly DR cost and power exchange between different NEMOS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信