{"title":"基于盲源分离和缺失特征理论的多目标识别","authors":"Huang Qi, X. Tao, Liu Hai Tao","doi":"10.1109/CAMAP.2005.1574220","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of classifying simultaneous multiple ground vehicles using their acoustic signatures recorded by unattended passive acoustic sensor array. The proposed approach relies on the blind source separation (BSS) algorithm based on time-frequency signal representations. Instead of estimating mixing parameters as the original algorithm do, we get the missing feature mask from the BSS step. Then an acoustic signature recognizer based on the missing feature theory recognizes each acoustic source. Recognition results are presented for several simultaneous vehicle acoustic signals. Compared with familiar ways, using both the missing feature theory and BSS algorithm results in high performance improvement","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiple target recognition based on blind source separation and missing feature theory\",\"authors\":\"Huang Qi, X. Tao, Liu Hai Tao\",\"doi\":\"10.1109/CAMAP.2005.1574220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of classifying simultaneous multiple ground vehicles using their acoustic signatures recorded by unattended passive acoustic sensor array. The proposed approach relies on the blind source separation (BSS) algorithm based on time-frequency signal representations. Instead of estimating mixing parameters as the original algorithm do, we get the missing feature mask from the BSS step. Then an acoustic signature recognizer based on the missing feature theory recognizes each acoustic source. Recognition results are presented for several simultaneous vehicle acoustic signals. Compared with familiar ways, using both the missing feature theory and BSS algorithm results in high performance improvement\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple target recognition based on blind source separation and missing feature theory
This paper considers the problem of classifying simultaneous multiple ground vehicles using their acoustic signatures recorded by unattended passive acoustic sensor array. The proposed approach relies on the blind source separation (BSS) algorithm based on time-frequency signal representations. Instead of estimating mixing parameters as the original algorithm do, we get the missing feature mask from the BSS step. Then an acoustic signature recognizer based on the missing feature theory recognizes each acoustic source. Recognition results are presented for several simultaneous vehicle acoustic signals. Compared with familiar ways, using both the missing feature theory and BSS algorithm results in high performance improvement