面向多模态情感分析的多视图共同学习方法

Wenxiu Geng, Yulong Bian, Xiangxian Li
{"title":"面向多模态情感分析的多视图共同学习方法","authors":"Wenxiu Geng, Yulong Bian, Xiangxian Li","doi":"10.1109/ICME55011.2023.00238","DOIUrl":null,"url":null,"abstract":"Existing works on multimodal sentiment analysis have focused on learning more discriminative unimodal sentiment information or improving multimodal fusion methods to enhance modal complementarity. However, practical results of these methods have been limited owing to the problems of insufficient intra-modal representation and inter-modal noise. To alleviate this problem, we propose a multi-view co-learning method (MVATF) for video sentiment analysis. First, we propose a multi-view features extraction module to capture more perspectives from a single modality. Second, we propose a two-level fusion sentiment enhancement strategy that uses hierarchical attentive learning fusion and a multi-task learning fusion module to achieve co-learning to effectively filter inter-modal noise for better multimodal sentiment fusion features. Experimental results on the CH-SIMS, CMU-MOSI and MOSEI datasets show that the proposed method outperforms the state-of-the-art methods.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-View Co-Learning Method for Multimodal Sentiment Analysis\",\"authors\":\"Wenxiu Geng, Yulong Bian, Xiangxian Li\",\"doi\":\"10.1109/ICME55011.2023.00238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing works on multimodal sentiment analysis have focused on learning more discriminative unimodal sentiment information or improving multimodal fusion methods to enhance modal complementarity. However, practical results of these methods have been limited owing to the problems of insufficient intra-modal representation and inter-modal noise. To alleviate this problem, we propose a multi-view co-learning method (MVATF) for video sentiment analysis. First, we propose a multi-view features extraction module to capture more perspectives from a single modality. Second, we propose a two-level fusion sentiment enhancement strategy that uses hierarchical attentive learning fusion and a multi-task learning fusion module to achieve co-learning to effectively filter inter-modal noise for better multimodal sentiment fusion features. Experimental results on the CH-SIMS, CMU-MOSI and MOSEI datasets show that the proposed method outperforms the state-of-the-art methods.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的多模态情感分析工作主要集中在学习更具判别性的单模态情感信息或改进多模态融合方法以增强模态互补性。然而,由于模态内表示不足和模态间噪声问题,这些方法的实际效果受到限制。为了解决这个问题,我们提出了一种用于视频情感分析的多视图共同学习方法(MVATF)。首先,我们提出了一个多视图特征提取模块,从单一模态中捕获更多的视角。其次,我们提出了一种两级融合情感增强策略,该策略使用分层关注学习融合和多任务学习融合模块实现共同学习,有效过滤多模态噪声,获得更好的多模态情感融合特征。在CH-SIMS、CMU-MOSI和MOSEI数据集上的实验结果表明,该方法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-View Co-Learning Method for Multimodal Sentiment Analysis
Existing works on multimodal sentiment analysis have focused on learning more discriminative unimodal sentiment information or improving multimodal fusion methods to enhance modal complementarity. However, practical results of these methods have been limited owing to the problems of insufficient intra-modal representation and inter-modal noise. To alleviate this problem, we propose a multi-view co-learning method (MVATF) for video sentiment analysis. First, we propose a multi-view features extraction module to capture more perspectives from a single modality. Second, we propose a two-level fusion sentiment enhancement strategy that uses hierarchical attentive learning fusion and a multi-task learning fusion module to achieve co-learning to effectively filter inter-modal noise for better multimodal sentiment fusion features. Experimental results on the CH-SIMS, CMU-MOSI and MOSEI datasets show that the proposed method outperforms the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信