R. Alizadehsani, Mohammad Javad Hosseini, Reihane Boghrati, Asma Ghandeharioun, F. Khozeimeh, Z. Sani
{"title":"应用成本敏感和特征创建算法进行冠状动脉疾病诊断","authors":"R. Alizadehsani, Mohammad Javad Hosseini, Reihane Boghrati, Asma Ghandeharioun, F. Khozeimeh, Z. Sani","doi":"10.4018/jkdb.2012010104","DOIUrl":null,"url":null,"abstract":"One of the main causes of death the world over is the family of cardiovascular diseases, of which coronary artery disease CAD is a major type. Angiography is the principal diagnostic modality for the stenosis of heart arteries; however, it leads to high complications and costs. The present study conducted data-mining algorithms on the Z-Alizadeh Sani dataset, so as to investigate rule based and feature based classifiers and their comparison, and the reason for the effectiveness of a preprocessing algorithm on a dataset. Misclassification of diseased patients has more side effects than that of healthy ones. To this end, this paper employs 10-fold cross-validation on cost-sensitive algorithms along with base classifiers of Naive Bayes, Sequential Minimal Optimization SMO, K-Nearest Neighbors KNN, Support Vector Machine SVM, and C4.5 and the results show that the SMO algorithm yielded very high sensitivity 97.22% and accuracy 92.09% rates.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Exerting Cost-Sensitive and Feature Creation Algorithms for Coronary Artery Disease Diagnosis\",\"authors\":\"R. Alizadehsani, Mohammad Javad Hosseini, Reihane Boghrati, Asma Ghandeharioun, F. Khozeimeh, Z. Sani\",\"doi\":\"10.4018/jkdb.2012010104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main causes of death the world over is the family of cardiovascular diseases, of which coronary artery disease CAD is a major type. Angiography is the principal diagnostic modality for the stenosis of heart arteries; however, it leads to high complications and costs. The present study conducted data-mining algorithms on the Z-Alizadeh Sani dataset, so as to investigate rule based and feature based classifiers and their comparison, and the reason for the effectiveness of a preprocessing algorithm on a dataset. Misclassification of diseased patients has more side effects than that of healthy ones. To this end, this paper employs 10-fold cross-validation on cost-sensitive algorithms along with base classifiers of Naive Bayes, Sequential Minimal Optimization SMO, K-Nearest Neighbors KNN, Support Vector Machine SVM, and C4.5 and the results show that the SMO algorithm yielded very high sensitivity 97.22% and accuracy 92.09% rates.\",\"PeriodicalId\":160270,\"journal\":{\"name\":\"Int. J. Knowl. Discov. Bioinform.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Knowl. Discov. Bioinform.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jkdb.2012010104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2012010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exerting Cost-Sensitive and Feature Creation Algorithms for Coronary Artery Disease Diagnosis
One of the main causes of death the world over is the family of cardiovascular diseases, of which coronary artery disease CAD is a major type. Angiography is the principal diagnostic modality for the stenosis of heart arteries; however, it leads to high complications and costs. The present study conducted data-mining algorithms on the Z-Alizadeh Sani dataset, so as to investigate rule based and feature based classifiers and their comparison, and the reason for the effectiveness of a preprocessing algorithm on a dataset. Misclassification of diseased patients has more side effects than that of healthy ones. To this end, this paper employs 10-fold cross-validation on cost-sensitive algorithms along with base classifiers of Naive Bayes, Sequential Minimal Optimization SMO, K-Nearest Neighbors KNN, Support Vector Machine SVM, and C4.5 and the results show that the SMO algorithm yielded very high sensitivity 97.22% and accuracy 92.09% rates.