ATR气流阻塞测试和CFD模拟

Chang H. Oh, S. A. Atkinson
{"title":"ATR气流阻塞测试和CFD模拟","authors":"Chang H. Oh, S. A. Atkinson","doi":"10.1115/imece2000-1532","DOIUrl":null,"url":null,"abstract":"\n Steady state flow channel blockage tests were conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the safety basis upgrade program for the Advanced Test Reactor (ATR). The tests were sponsored by the U.S. Department of Energy (DOE). This study was aimed at carrying out flow blockage tests, establishing a base case to compare test results with numerical results using a computational fluid dynamics code, calculating temperature profiles for blockage cases, and determining whether or not the ATR core would be exposed to core melting due to blockage of the inlet of a fuel cooling channel.\n The test section consisted of three parallel channels and two side channels along the side plate. Three cases were selected to evaluate flow blockage events in the channels. A base case with all the channels open, Case 1 where the inlet of the middle channel is blocked, and Case 2 where both the middle channel and the side channel are blocked.\n Laser Doppler anemometer (LDA) was used to measure velocities in the channel. Velocities were measured at 2.54-mm intervals in the channel width, and every 1.27-mm around side windows in the flow direction for three parallel channels.\n LDA measured velocity profiles for the base case and Case 1 indicated good agreement with predicted velocity profiles from the CFD model. The channel velocity in the blocked channel is about 70% of the velocity in the unblocked, adjacent channel in between the top and second side channel vents. Additional flow redistribution occurs into the blocked channel at the second side channel vent.\n Temperature calculations for the base case were made to compare with benchmark temperatures calculated with the ATR SINDA model and CFD calculations underpredicted benchmark plate temperatures by less than 10% while it predicted bulk temperatures very well. The same heat flux and boundary conditions were incorporated for Case 1 and Case 2. The results for both cases indicated that core melt would not occur in the postulated ATR flow channel blockage events simulated for this study. Peak fuel plate temperature is about 20% greater than the peak temperature for the unblocked case just upstream of the second side channel vent.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATR Flow Blockage Tests and CFD Simulations\",\"authors\":\"Chang H. Oh, S. A. Atkinson\",\"doi\":\"10.1115/imece2000-1532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Steady state flow channel blockage tests were conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the safety basis upgrade program for the Advanced Test Reactor (ATR). The tests were sponsored by the U.S. Department of Energy (DOE). This study was aimed at carrying out flow blockage tests, establishing a base case to compare test results with numerical results using a computational fluid dynamics code, calculating temperature profiles for blockage cases, and determining whether or not the ATR core would be exposed to core melting due to blockage of the inlet of a fuel cooling channel.\\n The test section consisted of three parallel channels and two side channels along the side plate. Three cases were selected to evaluate flow blockage events in the channels. A base case with all the channels open, Case 1 where the inlet of the middle channel is blocked, and Case 2 where both the middle channel and the side channel are blocked.\\n Laser Doppler anemometer (LDA) was used to measure velocities in the channel. Velocities were measured at 2.54-mm intervals in the channel width, and every 1.27-mm around side windows in the flow direction for three parallel channels.\\n LDA measured velocity profiles for the base case and Case 1 indicated good agreement with predicted velocity profiles from the CFD model. The channel velocity in the blocked channel is about 70% of the velocity in the unblocked, adjacent channel in between the top and second side channel vents. Additional flow redistribution occurs into the blocked channel at the second side channel vent.\\n Temperature calculations for the base case were made to compare with benchmark temperatures calculated with the ATR SINDA model and CFD calculations underpredicted benchmark plate temperatures by less than 10% while it predicted bulk temperatures very well. The same heat flux and boundary conditions were incorporated for Case 1 and Case 2. The results for both cases indicated that core melt would not occur in the postulated ATR flow channel blockage events simulated for this study. Peak fuel plate temperature is about 20% greater than the peak temperature for the unblocked case just upstream of the second side channel vent.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为先进试验堆(ATR)安全基础升级计划的一部分,稳态流道堵塞试验在爱达荷州国家工程与环境实验室(INEEL)进行。这些测试由美国能源部(DOE)赞助。本研究的目的是进行流动阻塞试验,建立一个基本情况,使用计算流体动力学代码将试验结果与数值结果进行比较,计算阻塞情况下的温度分布,并确定ATR堆芯是否会因燃料冷却通道入口阻塞而暴露于堆芯熔化。试验段由三个平行通道和沿侧板的两个侧通道组成。选取了三个案例来评估通道内的水流阻塞事件。所有通道打开的基本情况,中间通道的入口被阻塞的情况1,中间通道和侧通道都被阻塞的情况2。激光多普勒风速仪(LDA)用于测量通道内的速度。在通道宽度上,以2.54 mm的间隔测量速度,在三个平行通道的流动方向上,沿侧窗每隔1.27 mm测量速度。LDA测量的基本情况和情况1的速度曲线与CFD模型预测的速度曲线吻合良好。堵塞通道中的通道速度约为顶部和第二侧通道通风口之间未堵塞的相邻通道速度的70%。额外的流动再分配发生在阻塞通道的第二侧通道通风口。将基准工况的温度计算与ATR SINDA模型计算的基准温度进行比较,CFD计算对基准板温度的预测低于10%,而对体温度的预测非常好。对于情形1和情形2,采用了相同的热通量和边界条件。这两种情况的结果都表明,在本研究模拟的ATR流道阻塞事件中,不会发生堆芯熔化。燃油板的峰值温度比第二侧通道通风口上游未堵塞的情况下的峰值温度高20%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATR Flow Blockage Tests and CFD Simulations
Steady state flow channel blockage tests were conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the safety basis upgrade program for the Advanced Test Reactor (ATR). The tests were sponsored by the U.S. Department of Energy (DOE). This study was aimed at carrying out flow blockage tests, establishing a base case to compare test results with numerical results using a computational fluid dynamics code, calculating temperature profiles for blockage cases, and determining whether or not the ATR core would be exposed to core melting due to blockage of the inlet of a fuel cooling channel. The test section consisted of three parallel channels and two side channels along the side plate. Three cases were selected to evaluate flow blockage events in the channels. A base case with all the channels open, Case 1 where the inlet of the middle channel is blocked, and Case 2 where both the middle channel and the side channel are blocked. Laser Doppler anemometer (LDA) was used to measure velocities in the channel. Velocities were measured at 2.54-mm intervals in the channel width, and every 1.27-mm around side windows in the flow direction for three parallel channels. LDA measured velocity profiles for the base case and Case 1 indicated good agreement with predicted velocity profiles from the CFD model. The channel velocity in the blocked channel is about 70% of the velocity in the unblocked, adjacent channel in between the top and second side channel vents. Additional flow redistribution occurs into the blocked channel at the second side channel vent. Temperature calculations for the base case were made to compare with benchmark temperatures calculated with the ATR SINDA model and CFD calculations underpredicted benchmark plate temperatures by less than 10% while it predicted bulk temperatures very well. The same heat flux and boundary conditions were incorporated for Case 1 and Case 2. The results for both cases indicated that core melt would not occur in the postulated ATR flow channel blockage events simulated for this study. Peak fuel plate temperature is about 20% greater than the peak temperature for the unblocked case just upstream of the second side channel vent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信