利用强化学习过程实现Web服务的高效选择

Dongjun Cai, Zongwei Luo, Kun Qian, Yang Gao
{"title":"利用强化学习过程实现Web服务的高效选择","authors":"Dongjun Cai, Zongwei Luo, Kun Qian, Yang Gao","doi":"10.1109/ICTAI.2005.122","DOIUrl":null,"url":null,"abstract":"As an emerging technology for implementing Web services over the Internet, mobile agent model has several advantages over the traditional RFC model. However, with the popularity of distributed networks (e.g. Internet), Web service providers tend to rely on external resources to complete certain tasks. This definitely increases the difficulty in locating appropriate service providers according to clients' requirements in the new scenario. To address this issue, we propose a reinforcement learning process based on the mobile agent model, which makes agents more efficient and intelligent in selecting Web service providers. Finally, an implementation of our prototype is presented","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards efficient selection of Web services with reinforcement learning process\",\"authors\":\"Dongjun Cai, Zongwei Luo, Kun Qian, Yang Gao\",\"doi\":\"10.1109/ICTAI.2005.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an emerging technology for implementing Web services over the Internet, mobile agent model has several advantages over the traditional RFC model. However, with the popularity of distributed networks (e.g. Internet), Web service providers tend to rely on external resources to complete certain tasks. This definitely increases the difficulty in locating appropriate service providers according to clients' requirements in the new scenario. To address this issue, we propose a reinforcement learning process based on the mobile agent model, which makes agents more efficient and intelligent in selecting Web service providers. Finally, an implementation of our prototype is presented\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

移动代理模型作为一种新兴的在Internet上实现Web服务的技术,与传统的RFC模型相比具有许多优点。然而,随着分布式网络(例如Internet)的普及,Web服务提供者倾向于依赖外部资源来完成某些任务。这无疑增加了在新场景中根据客户需求定位适当服务提供者的难度。为了解决这个问题,我们提出了一种基于移动代理模型的强化学习过程,使代理在选择Web服务提供商时更加高效和智能。最后,给出了原型的实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards efficient selection of Web services with reinforcement learning process
As an emerging technology for implementing Web services over the Internet, mobile agent model has several advantages over the traditional RFC model. However, with the popularity of distributed networks (e.g. Internet), Web service providers tend to rely on external resources to complete certain tasks. This definitely increases the difficulty in locating appropriate service providers according to clients' requirements in the new scenario. To address this issue, we propose a reinforcement learning process based on the mobile agent model, which makes agents more efficient and intelligent in selecting Web service providers. Finally, an implementation of our prototype is presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信