基于边界测量的扩散-平流作动器动力学自适应补偿

D. Bresch-Pietri, M. Krstić
{"title":"基于边界测量的扩散-平流作动器动力学自适应补偿","authors":"D. Bresch-Pietri, M. Krstić","doi":"10.1109/CDC.2015.7402378","DOIUrl":null,"url":null,"abstract":"For (potentially unstable) Ordinary Differential Equation (ODE) systems with actuator delay, delay compensation can be obtained with a prediction-based control law. In this paper, we consider another class of PDE-ODE cascade, in which the Partial Differential Equation (PDE) accounts for diffusive effects. We investigate compensation of both convection and diffusion and extend a previously proposed control design to handle both uncertainty in the ODE parameters and boundary measurements. Robustness to small perturbations in the diffusion and convection coefficients is also proved.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive compensation of diffusion-advection actuator dynamics using boundary measurements\",\"authors\":\"D. Bresch-Pietri, M. Krstić\",\"doi\":\"10.1109/CDC.2015.7402378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For (potentially unstable) Ordinary Differential Equation (ODE) systems with actuator delay, delay compensation can be obtained with a prediction-based control law. In this paper, we consider another class of PDE-ODE cascade, in which the Partial Differential Equation (PDE) accounts for diffusive effects. We investigate compensation of both convection and diffusion and extend a previously proposed control design to handle both uncertainty in the ODE parameters and boundary measurements. Robustness to small perturbations in the diffusion and convection coefficients is also proved.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7402378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7402378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于具有执行器延迟的(潜在不稳定)常微分方程(ODE)系统,可以使用基于预测的控制律来获得延迟补偿。在本文中,我们考虑了另一类PDE- ode级联,其中偏微分方程(PDE)考虑了扩散效应。我们研究了对流和扩散的补偿,并扩展了先前提出的控制设计,以处理ODE参数和边界测量的不确定性。对扩散系数和对流系数的小扰动也证明了鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive compensation of diffusion-advection actuator dynamics using boundary measurements
For (potentially unstable) Ordinary Differential Equation (ODE) systems with actuator delay, delay compensation can be obtained with a prediction-based control law. In this paper, we consider another class of PDE-ODE cascade, in which the Partial Differential Equation (PDE) accounts for diffusive effects. We investigate compensation of both convection and diffusion and extend a previously proposed control design to handle both uncertainty in the ODE parameters and boundary measurements. Robustness to small perturbations in the diffusion and convection coefficients is also proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信