海报:通过tls加密流可视化进行恶意软件流量分析的可行性

Dongeon Kim, Jihun Han, Jinwoo Lee, Heejun Roh, Wonjun Lee
{"title":"海报:通过tls加密流可视化进行恶意软件流量分析的可行性","authors":"Dongeon Kim, Jihun Han, Jinwoo Lee, Heejun Roh, Wonjun Lee","doi":"10.1109/ICNP49622.2020.9259387","DOIUrl":null,"url":null,"abstract":"With the wide adoption of TLS, malware’s use of TLS is also growing fast. However, fine-grained feature selection in existing approaches is too burdensome. To this end, we propose to visualize TLS-encrypted flow metadata as an image for better malware traffic analysis and classification. We discuss its feasibility and show some preliminary classification results with high accuracy.","PeriodicalId":233856,"journal":{"name":"2020 IEEE 28th International Conference on Network Protocols (ICNP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Poster: Feasibility of Malware Traffic Analysis through TLS-Encrypted Flow Visualization\",\"authors\":\"Dongeon Kim, Jihun Han, Jinwoo Lee, Heejun Roh, Wonjun Lee\",\"doi\":\"10.1109/ICNP49622.2020.9259387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide adoption of TLS, malware’s use of TLS is also growing fast. However, fine-grained feature selection in existing approaches is too burdensome. To this end, we propose to visualize TLS-encrypted flow metadata as an image for better malware traffic analysis and classification. We discuss its feasibility and show some preliminary classification results with high accuracy.\",\"PeriodicalId\":233856,\"journal\":{\"name\":\"2020 IEEE 28th International Conference on Network Protocols (ICNP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 28th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP49622.2020.9259387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 28th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP49622.2020.9259387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着TLS的广泛采用,恶意软件对TLS的使用也在快速增长。然而,现有方法中的细粒度特征选择过于繁琐。为此,我们建议将tls加密的流量元数据可视化为图像,以便更好地进行恶意软件流量分析和分类。讨论了该方法的可行性,并给出了一些具有较高准确率的初步分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Feasibility of Malware Traffic Analysis through TLS-Encrypted Flow Visualization
With the wide adoption of TLS, malware’s use of TLS is also growing fast. However, fine-grained feature selection in existing approaches is too burdensome. To this end, we propose to visualize TLS-encrypted flow metadata as an image for better malware traffic analysis and classification. We discuss its feasibility and show some preliminary classification results with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信