汉语语义依赖分析:树库的构建及其在分类中的应用

Jiajun Yan, D. Bracewell, S. Kuroiwa, F. Ren
{"title":"汉语语义依赖分析:树库的构建及其在分类中的应用","authors":"Jiajun Yan, D. Bracewell, S. Kuroiwa, F. Ren","doi":"10.1145/1233912.1233914","DOIUrl":null,"url":null,"abstract":"Semantic analysis is a standard tool in the Natural Language Processing (NLP) toolbox with widespread applications. In this article, we look at tagging part of the Penn Chinese Treebank with semantic dependency. Then we take this tagged data to train a maximum entropy classifier to label the semantic relations between headwords and dependents to perform semantic analysis on Chinese sentences. The classifier was able to achieve an accuracy of over 84%. We then analyze the errors in classification to determine the problems and possible solutions for this type of semantic analysis.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"5 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chinese semantic dependency analysis: Construction of a treebank and its use in classification\",\"authors\":\"Jiajun Yan, D. Bracewell, S. Kuroiwa, F. Ren\",\"doi\":\"10.1145/1233912.1233914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic analysis is a standard tool in the Natural Language Processing (NLP) toolbox with widespread applications. In this article, we look at tagging part of the Penn Chinese Treebank with semantic dependency. Then we take this tagged data to train a maximum entropy classifier to label the semantic relations between headwords and dependents to perform semantic analysis on Chinese sentences. The classifier was able to achieve an accuracy of over 84%. We then analyze the errors in classification to determine the problems and possible solutions for this type of semantic analysis.\",\"PeriodicalId\":412532,\"journal\":{\"name\":\"ACM Trans. Speech Lang. Process.\",\"volume\":\"5 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Speech Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1233912.1233914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1233912.1233914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

语义分析是自然语言处理(NLP)工具箱中的一个标准工具,有着广泛的应用。在这篇文章中,我们研究了用语义依赖来标记宾州中文树库的一部分。然后,我们利用这些标记数据训练最大熵分类器来标记标题词和依存词之间的语义关系,从而对汉语句子进行语义分析。该分类器能够达到超过84%的准确率。然后,我们分析了分类中的错误,以确定这种类型的语义分析的问题和可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese semantic dependency analysis: Construction of a treebank and its use in classification
Semantic analysis is a standard tool in the Natural Language Processing (NLP) toolbox with widespread applications. In this article, we look at tagging part of the Penn Chinese Treebank with semantic dependency. Then we take this tagged data to train a maximum entropy classifier to label the semantic relations between headwords and dependents to perform semantic analysis on Chinese sentences. The classifier was able to achieve an accuracy of over 84%. We then analyze the errors in classification to determine the problems and possible solutions for this type of semantic analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信