{"title":"汉语语义依赖分析:树库的构建及其在分类中的应用","authors":"Jiajun Yan, D. Bracewell, S. Kuroiwa, F. Ren","doi":"10.1145/1233912.1233914","DOIUrl":null,"url":null,"abstract":"Semantic analysis is a standard tool in the Natural Language Processing (NLP) toolbox with widespread applications. In this article, we look at tagging part of the Penn Chinese Treebank with semantic dependency. Then we take this tagged data to train a maximum entropy classifier to label the semantic relations between headwords and dependents to perform semantic analysis on Chinese sentences. The classifier was able to achieve an accuracy of over 84%. We then analyze the errors in classification to determine the problems and possible solutions for this type of semantic analysis.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"5 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chinese semantic dependency analysis: Construction of a treebank and its use in classification\",\"authors\":\"Jiajun Yan, D. Bracewell, S. Kuroiwa, F. Ren\",\"doi\":\"10.1145/1233912.1233914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic analysis is a standard tool in the Natural Language Processing (NLP) toolbox with widespread applications. In this article, we look at tagging part of the Penn Chinese Treebank with semantic dependency. Then we take this tagged data to train a maximum entropy classifier to label the semantic relations between headwords and dependents to perform semantic analysis on Chinese sentences. The classifier was able to achieve an accuracy of over 84%. We then analyze the errors in classification to determine the problems and possible solutions for this type of semantic analysis.\",\"PeriodicalId\":412532,\"journal\":{\"name\":\"ACM Trans. Speech Lang. Process.\",\"volume\":\"5 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Speech Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1233912.1233914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1233912.1233914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chinese semantic dependency analysis: Construction of a treebank and its use in classification
Semantic analysis is a standard tool in the Natural Language Processing (NLP) toolbox with widespread applications. In this article, we look at tagging part of the Penn Chinese Treebank with semantic dependency. Then we take this tagged data to train a maximum entropy classifier to label the semantic relations between headwords and dependents to perform semantic analysis on Chinese sentences. The classifier was able to achieve an accuracy of over 84%. We then analyze the errors in classification to determine the problems and possible solutions for this type of semantic analysis.